IMPLEMENTATION OF DSP a 1 IMPLEMENTATION OF DSP L] 2
UT RTL DESIGN WITH ARX a March 9, 2018 UT RTL DESIGN WITH ARX] March 9, 2018

OUTLINE
RTL DESIGN WITH ARX
» Design languages
IMPLEMENTATION OF DIGITAL SIGNAL * Arx motivation and alternatives
PROCESSING » Main features of Arx
» Arx language elements
Sabih H. Gerez — Components and functions
University of Twente — Data types
— Statements

» Code generation and simulation

] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 3 IMPLEMENTATION OF DSP L] 4
UT RTL DESIGN WITH ARX a March 9, 2018 UT RTL DESIGN WITH ARX a March 9, 2018
GENERAL PURPOSE VS. DOMAIN-

SPECIFIC DESIGN LANGUAGES ON LEARNING NEW LANGUAGES

» Should one adopt (and adapt) existing programming languages * Reusing an existing language for specific modeling domains is
for the design of parallel embedded systems, signal processing not necessarily a good idea.
systems? « What matters, is mastering the semantics of the domain.

« Yes, because: Learning to think in the paradigms of the domain takes much

longer than learning a new programming language.

* |tis e.g. a mistake to think that one convert a C programmer
into a hardware designer by providing her with a tool that

— This alleviates the burden of making new compilers,
debuggers, etc.

* No, because: synthesizes hardware from C.
— One wants to model only the semantics of some domain and
wants to keep the |anguage clean of pecu”arities of the host Edwards, S.A., The Challenges of Synthesizing Hardware from C-Like

Languages, IEEE Design and Test of Computers, pp. 375-385,

language. (September/October 2006).

[] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 5
RTL DESIGN WITH ARX a March 9, 2018
THE LANGUAGE SUBSET ISSUE

* When an existing language is used for describing models in a
new language, one is confronted with the fact that not all
language constructs make sense in the application domain.

* One necessarily needs to isolate a language subset that should
be used.

* This is true for e.g. C.

» But also for e.g. VHDL, originally a simulation language, later
used for synthesis.

] © Sabih H. Gerez, University of Twente, The Netherlands]

IMPLEMENTATION OF DSP . 6
RTL DESIGN WITH ARX a March 9, 2018
DOMAIN-SPECIFIC LANGUAGES

» Languages specifically designed for well-defined, constrained,
modeling are called domain-specific languages.

* No design mistakes due to subset violations: all language
constructions are meaningful in domain.

» Tools such as parsers can be kept simple as they only need to
deal with a small language rather than a large and complex
one.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L] 7
RTL DESIGN WITH ARX a March 9, 2018
DATA-FLOW LANGUAGES

* They have the single-assignment property: a variable is only
assigned a value once.

* This means that, after conversion into a DFG, the variable can
be associated to the output of a single vertex.

» Because of single assignment, ordering of statements is not
relevant.

* Think also of VHDL.: a process should in principle write a signal
only once (unless it contains wait statements).

» They can have syntactic support for typical data-flow elements
such as the delay node.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP . 8
RTL DESIGN WITH ARX] March 9, 2018
DATA-FLOW LANGUAGE EXAMPLE:
SILAGE

z[n]D
Yy bO*x + z2@1
52 b bo z2 = al*y + bl*x +
OuBuOL® 2101
“1 <2 z1 = a2*y + b2*x
a,g al yD[n]

Hilfinger, P.N., "A High-Level Language and Silicon Compiler for Digital Signal
Processing”, Custom Integrated Circuit Conference, pp. 213-216, (1985).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP . 9 IMPLEMENTATION OF DSP [10
UT RTL DESIGN WITH ARX [March 9, 2018 UT RTL DESIGN WITH ARX . March 9, 2018
» Voluntarily stick to single-assignment code. TRANSITION
. LJsfe stath yarla;]bles for delay elements and read these values abstract System models
efore writing them. often described in
T out sec(T_in x) { System C or Matlab
static T_reg z1 = O; Level
static T_reg z2 = 0; ...
y = b0* + z2; wrong? translation
z2_nxt = al*y + bl*x + z1; -
(months)
z1l nxt = a2*y + b2*x; RT Level
z2 = z2_nxt; z1 = z1_nxt; // register update Hardware models
return(y); in VHDL
} concrete
] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP . 11 IMPLEMENTATION OF DSP [12
UT RTL DESIGN WITH ARX [March 9, 2018 UT RTL DESIGN WITH ARX . March 9, 2018

C-BASED HARDWARE DESIGN

» Arguments in favor of C-based design:
— Everybody knows C; we don’t want to teach new languages.
— Lots of legacy C code.
— High execution speed.

* Many commercial products based on translation from
C/C++/SystemC including:

Catapult (Calypto part of Mentor Graphics)

Stratus (Cadence, replaces C-to-Silicon and Cynthesizer)

Synphony C Compiler (Synopsys, formerly Synfora PICO)

Vivado (Xilinx, formerly AutoESL)

Intel HLS Compiler (Intel/Altera, front-end to Platform Designer/Quartus)

CyberWorkBench (NEC System Technologies)

[] © Sabih H. Gerez, University of Twente, The Netherlands []

GRAPHICAL DESIGN ENTRY

* Many solutions based on dedicated blocksets to be used in
Simulink:
— Mathwork’s HDL Coder (from graphics and text source)
— Synphony Model Compiler (Synopsys)
— Xilinx System Generator for DSP
— Intel/Altera DSP Builder

» Graphical design entry can be cumbersome compared to text-
based entry:

— One does not always want to instantiate an adder for every addition, a
multiplexer for every if-statement, etc.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP s 13
RTL DESIGN WITH ARX a March 9, 2018
DOMAIN-SPECIFIC DESIGN
LANGUAGES

» All language constructs make sense in domain:
— Entire language is synthesizable.
— Designer does not need to bother about allowed subsets.

IMPLEMENTATION OF DSP . 14
RTL DESIGN WITH ARX] March 9, 2018
ARX: A DOMAIN-SPECIFIC RTL
LANGUAGE

Domain-specific = One language (Arx) for multiple

RTL language: Arx levels.
= Developed at University of Twente.

= Arx eliminates manual translation
from C to VHDL!

» Straightforward language constructions: | Funetiona = Correct by construction.
— Improve designer efficiency. | S v |_ o W\i/tirigcsgggd
Lead to elegant designs. it-true generator cimulation
. A 4
* Examples: _ Bit-true and VHDL
— Bluespec (commercial) clock-cycle-true .
— GEZEL (university tool)
a © Sabih H. Gerez, University of Twente, The Netherlands | [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP L 15 IMPLEMENTATION OF DSP [16
RTL DESIGN WITH ARX L March 9, 2018 RTL DESIGN WITH ARX . March 9, 2018

ARX EXAMPLE

component accumulator
wl: generic integer = 10 CIOCk and reset are
T_in : generic type = signed(wl , 1) I ici
T_out: generic type = signed(wl-2, 1, sat, round) Imp“CIt'

T_sum: generic type
clear: in bit

signed(wl+5, 8)

data_in : in T_in
data_out: out T_out -
variable o § r
sum: T_sum v
register -EI D =D
r: T_sum = @ 8
begin 3
if clear ==1 + =t
sum = data_in S,
else ‘E
sum = r + data_in clear -]
end
r o= sum
data_out = r
end
[| © Sabih H. Gerez, University of Twente, The Netherlands [|

LANGAUGE FEATURES

» Explicit distinction between wires and registers.
 Implicit clock and reset.

» Generic data types allowing propagation of data types down
hierarchy (e.g. floating-point to fixed-point refinement).

» Data types for DSP, especially fixed-point data types.
— Support for overflow and guantization modes.
— Efficient simulation of fixed-point data types.

* No semicolons!

» Simple: can be learned in one day!

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP [] 17
RTL DESIGN WITH ARX a March 9, 2018
ON-LINE FEATURES m

* Please visit;

www_bibix.nl

* The website gives access to:
— On-line wiki-style manual,

— Web-based demonstration (upload Arx, download corresponding C++
and VHDL),

— An IP library of basic blocks: FIR filter, CORDIC, FFT, etc.
— A GFSK receiver.

» Feedback on Arx, requests for cooperation, very welcome.

IMPLEMENTATION OF DSP L] 18
UT RTL DESIGN WITH ARX March 9, 2018

THE ARX LANGUAGE: BUILDING
BLOCKS

* Components

Same as entities (VHDL), modules (Verilog/SystemC)
Contain sequential logic

Can be instantiated inside other components (hierarchical descriptions
are allowed)

In current version: entire design in one file.

Functions:
— Contain only combinational logic

— In current version: not supported in VHDL generation (you need to write
the VHDL function by hand)

] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP | 19 IMPLEMENTATION OF DSP . 20
UT RTL DESIGN WITH ARX] March 9, 2018 UT RTL DESIGN WITH ARX | March 9, 2018
cmﬁponent reg
word_length: generic integer 8 . .
T I0 : generic type bitvector (word length) b RegIStel’S
dd a H o onent tor
data_in @ in T_10 e e | — They store data are updated at the end of clock cycle.
_ S, e e — Assignment is concurrent.
register Lt : F topIo
storage : T IO = 0 Rl 8 CE I
begi variable
egin data internal: T toplO 1 -
storage data_in F = M Val’lab|eS
data out storage generate _ Correspond to Wires
end rl: reg y .
taiin — Assignment is sequential (“single assignment” not required).
rZ: reg
word length lengtt
e e
begin
end
[] © Sabih H. Gerez, University of Twente, The Netherlands [| [] © Sabih H. Gerez, University of Twente, The Netherlands []

. IMPLEMENTATION OF DSP [21
UT RTL DESIGN WITH ARX [March 9, 2018
DATA TYPES

» Scalar types:
— bit
boolean
integer
real
* Enumerated types (e.g. for state specification)

* Vector types:

IMPLEMENTATION OF DSP . 22
RTL DESIGN WITH ARX a March 9, 2018
FIXED-POINT DATA TYPES

» Refinement of signed/unsigned:
» By supplying additional optional arguments for:
— Integer word length
— Overflow mode
— Quantization mode
« Examples:
— signed(8)

— bitvector — unsigned(8, 3): fixed-point with 5 fractional bits, wrap-around for
— signed overflow, truncate for quantization
— unsigned — unsigned(8, 3, saturate, round)
] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP | 23 IMPLEMENTATION OF DSP . 24
UT RTL DESIGN WITH ARX L] March 9, 2018 UT RTL DESIGN WITH ARX | March 9, 2018

FIXED-POINT SUPPORT

» Use of fixed-point data type implies automatic code generation
for:
— Binary-point alignment
— Sign extension
— Handling of overflow and quantization mode.

[] © Sabih H. Gerez, University of Twente, The Netherlands

EXAMPLE: USE OF CONSTANTS

register

bvall: bit%ector(S) = 0b1l0101010

bvalZ: bitvector(8) = (Ohaa

bval3: bitvector(8) = 170

bvald: unsiéned(S) = (Ohaa

bval5: unsigned(8,2) = 1.75 # 1

bvalé6: signed(8,2) = -1.5 # 1

bval7: signed (8, 4) = 3.14 # will be I 125 = 50/1
[] © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP a 25
UT RTL DESIGN WITH ARX a March 9, 2018

EXAMPLE: ENUMERATION DATA TYPE

IMPLEMENTATION OF DSP L] 26
UT RTL DESIGN WITH ARX a March 9, 2018

EXAMPLE: ARRAYS

component top

T I0 : generic type signed (10, 5, sat, round)
data in : in T IO
data_out : out T_IO
type . type
input state = enum(start, processing, ready) T enum: enum(one, two, three)
— T arl: array[3] of T IO
T ar2: array[3] of T enum
3 : register
e vl : T arl 0
register . . v2 1 T ar? {T enum.three, T enum.two, T enum.one}
current state: input state = input state.start v3 : array[5] of T IO (5, 4, 3, 2, 1)
; begin
begin v1l[1] data in
if current state == input state.start for i im 0:1
— . oo P v2[1i] vZ[1+1]
current_state = input_state.processing end
end ; ; sir
v3[0][0:4] v1i[2][5:9]
v3[0][5:9] = v1[2][0:4]
] © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP L 27 IMPLEMENTATION OF DSP] 28
UT RTL DESIGN WITH ARX L] March 9, 2018 UT RTL DESIGN WITH ARX u March 9, 2018
* lIteration based on an index variable
case output state — Index can only be incremented by 1
when out state.start
if start of processin e . L .
_OFP dJ , » Specifies iteration in space not in time (as in e.g. VHDL).
output state = out state.processing
end
when out state.processing Example:
if endfOffproceSSlng for i in 1l:half size
output state = out state. ready delay group[i] delay line[half size-i] + delay line[half size+i]
- - end
end
else # default case,; no action
end
[] © Sabih H. Gerez, University of Twente, The Netherlands [| [] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 29
RTL DESIGN WITH ARX a March 9, 2018
CODE GENERATION

» Based on data-flow analysis & static scheduling.

» C++-code generation (targeted for fast simulation):
— Flattens description
— Maps fixed-point data types on integers (limited to 64 bits)
— C++ object with:
= reset method
= run method to simulate one clock cycle
— Optional VCD generation for waveform viewing (now: all or none)

* VHDL-code generation (targeted for synthesis):
— Preserves component hierarchy

] © Sabih H. Gerez, University of Twente, The Netherlands]

. IMPLEMENTATION OF DSP [30
UT RTL DESIGN WITH ARX (] March 9, 2018
SUMMARY

» A domain-specific language for the RTL MoC, e.g. Arx, bridges
wall when descending from the system level.

» Arx brings about that one source code generates:
— C++-based simulation model optimized for simulation speed
— VHDL code for synthesis.
* The Arx approach:
— Saves manual recoding time!
— Is correct by construction!

[] © Sabih H. Gerez, University of Twente, The Netherlands []

