
Web appendix: Numerical evaluation of quasi-stationary distributions

Erik A. van Doorna and Philip K. Pollettb

a Department of Applied Mathematics, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

E-mail: e.a.vandoorn@utwente.nl

b Department of Mathematics, The University of Queensland

Qld 4072, Australia

E-mail: pkp@maths.uq.edu.au

13 January 2013

We consider here the numerical evaluation of quasi-stationary distributions, discussing a range of

methods and giving guidance on how to implement these in MATLABR©, perhaps the most widely

used package for scientific computing. MATLAB’s numerical linear algebra features are built on

LAPACK, a Fortran library developed for high-performance computers, and it is worth pointing

out that other interfaces exist, including the open source Scilab1 and Octave2, which are gaining in

popularity. LAPACK itself is in the public domain, and available to aficionados from netlib3.

Restricting our attention to the case where S = {1, 2, . . . , n} is irreducible, we seek to evaluate

the left eigenvector u = (ui, i ∈ S) of Q corresponding to the eigenvalue, −α, with maximal real

part (being simple, real and strictly negative). Once normalized so that u1T = 1, u is the unique

quasi-stationary (and then limiting conditional) distribution. If S is reducible, then we would address

an eigenvector problem within a restricted set of states (typically, when −α has geometric multiplicity

one, we would determine u over states that are accessible from the minimal class Smin, and then put

uj = 0 whenever j is not accessible from Smin); refer to Subsection 3.2 of the paper (General state

space).

MATLAB provides two routines for evaluating the eigenvalues and eigenvectors of a square matrix,

namely eig and eigs. The first is, in principle, suitable for any square matrix, its utility limited by

the availability of memory and processing power. The second is suitable for large sparse matrices

(matrices populated primarily with zeros). We will explain how both routines are used to evaluate

quasi-stationary distributions.

According to Cleve Moler4 there are 16 different “code paths” for the eig function. The one trod

in our case would be the QR algorithm preceded by a reduction of Q to Hessenberg form (for details

see Golub and van Loan [1]), unless, exceptionally, eig identified some special structure that it could

exploit. The following sequence of commands will usually suffice if Q is not too large:

[V,D]=eig(transpose(Q));

[mu,position]=max(real(diag(D))); (1)

u=V(:,position); u=u/sum(u);

alpha=-mu;

The first step includes, importantly, transposing Q (MATLAB evaluates right eigenvectors). The result

1http://www.scilab.org/
2http://www.gnu.org/software/octave/
3http://www.netlib.org/lapack/
4MATLAB News & Notes, Winter 2000.

1

is a diagonal matrix D of all eigenvalues of Q and a matrix V whose columns are the corresponding

eigenvectors (QT V = QT D, equivalently, V T Q = DQ). The second identifies the eigenvalue with

maximum real part (which, for our Q, is real) and records its position. The third step evaluates the

quasi-stationary distribution by first extracting the relevant eigenvector and then normalizing it. The

final step evaluates the decay parameter as the negative of the dominant eigenvalue. We mention here,

and for later reference, that were Q to be conservative over S (and hence positive recurrent) the above

algorithm would return the unique stationary distribution, namely the unique solution to the system

(πQ = 0 ; π1T = 1), and α would be returned as 0 (or very close to 0). However, this is not how one

would evaluate a stationary distribution. Rather, since we are solving a system of linear equations, a

standard factorize-and-solve method such as Gaussian elimination should be used; in MATLAB, the

matrix right-divide command

u=[zeros(1,length(Q)) 1]/[Q ones(length(Q),1)];

will achieve this. Better still, we might use the GTH algorithm (Grassmann et al. [2], but see also [6]),

a version of Gaussian elimination, which is regarded as the gold standard for Markov chains; its

superior properties are detailed in O’Cinneide [4].

The above method assumes, of course, that Q is in the MATLAB workspace. But, setting up Q

might not be a trivial matter, particularly when the state space is multi-dimensional. In these cases a

bijection f : S → S ′, where S ′ = {1, 2, . . . , |S|}, is needed to render Q as a square matrix over S ′; the

rate of transition from x to y in S is assigned to qf(x),f(y). If the number x of occupied patches in the

metapopulation model described in Example 1 of the paper were constrained by another variable y,

being the number of patches suitable for occupancy, then the extant states would form a triangular

array S = {(x, y) : 1 ≤ x ≤ y ≤ n} (see Example 2 of the paper). An appropriate bijection from S to

S ′ = {1, 2, . . . , 1
2n(n + 1)} would be f(x, y) := y + 1

2(x − 1)(2n − x). For more complex state spaces,

a hash table might provide a more efficient implementation of f , although there would be some setup

costs. Perhaps surprisingly, the inverse map is seldom required; typically we would be estimating

quantities such as Pr(X(t) ∈ A|X(t) ∈ S) for A ⊂ S (summing uf(x) over x ∈ A), but even when

identifying quantities such as the mode of u, a simple search may suffice.

Notice that if, for example, n = 1000 in our metapopulation model, Q would have 250, 500, 250, 000

elements, and thus, stored as dense matrix, would require at least 2, 000 gigabytes of main memory.

Yet, with only nearest neighbour transitions, typical of this sort of model, only 3 million (0.0003%)

of these entries will be non-zero. For such problems, sparse matrix technology should be used. MAT-

LAB provides the full range of sparse matrix operations. The eigs command implements Arnoldi’s

2

algorithm, which evaluates (typically a selection of) eigenvalues and eigenvectors of a sparse matrix.

The algorithm is iterative. On each iteration, the “basic” Arnoldi method is used. Starting with a

“seed vector” v, an m × m upper-Hessenberg matrix H and an n × m matrix V is constructed in

such a way that V T QV = H, with m fixed to be much smaller than n. The eigenvectors of H are

determined by some efficient dense-matrix method and these are used to provide estimates of the

extremal eigenvectors of Q. The idea is that if z is an eigenvector of H, then V z should be close

to an eigenvector of Q. Implementations differ in the way v is updated ready for the next iteration.

MATLAB’s eigs implements (through LAPACK) a (random) restart method due to Lehoucq and

Sorensen [3]. An alternative restart method, one that is particularly suited to the present problem, is

described in Pollett and Stewart [5], but presently not available in MATLAB. For further details, see

[1, Chapter 9].

For large problems with sparse transition structure, we must first set up Q as a sparse matrix. The

simplest way is to begin with the command Q=sparse([]), which initializes Q as an empty sparse

matrix (replacing the usual step of setting Q to be the zero matrix: Q=zeros(n,n)). Then, we simply

enter the non-zero elements as we would normally. (A more complicated method, but one which

can markedly reduce execution time, involves setting up vectors of row indices and column indices of

non-zero entries and a vector of their values.) Replacing the first step in the earlier procedure by

[V,D]=eigs(transpose(Q));

will achieve the desired effect, but, as we require the eigenvector corresponding to the eigenvalue with

maximum real part, it is significantly more efficient proceed as follows:

[u,mu]=eigs(transpose(Q),1,’lr’);

u=u/sum(u); (2)

alpha=-mu;

(The incantation [u,mu]=eigs(A,k,’lr’) yields the k eigenvalues of A with largest real part and the

corresponding right eigenvectors.) It is quite remarkable that our dense-matrix code can be tweaked

so simply.

MATLAB permits us a great deal of control over the way eigs is used. For example, the value

of the Arnoldi parameter m can be changed from the default m = 20. If m is chosen too large or

too small, the algorithm will be slow; if too large the time taken to evaluate the eigenvectors of H

will be predominant, while if too small the number of outer iterations might be prohibitively large.

3

Another useful feature of eigs, which is facilitated by LAPACK’s remarkable “reverse communication”

interface, is the ability to pass Q to eigs as a function (function handle) that evaluates QT x:

[u,mu]=eigs(@Qfun,1,’lr’);

where

function y = Qfun(x)

.....

end

declared elsewhere in our code, effects the operation QT x as an efficient elementwise calculation. So, Q

does not need to be stored at all , and in principle very much larger problems can be tackled. However,

evaluation of QT x can be time consuming and, because evaluation is frequent, the resulting code can

be very slow.

We mention a final approach to evaluating the quasi-stationary distribution u, which exploits the

return map m 7→ πm (recall that πm is the stationary distribution of the process instantaneously

returned to S, on departure, according to the measure m, that is, πm(Q+a
T
m) = 0). In the present

finite state-space setting, the return map is contractive, and thus iteration leads us to u. So, we start

with an estimate of u, which might for example be suggested by an analytical approximation such as

a diffusion approximation, and then iterate until the desired accuracy is achieved, at each step using a

Gaussian elimination algorithm to evaluate πm. If MATLAB’s matrix right-divide command is used,

sparsity or bandedness in the modified Q will be detected automatically and exploited. However, after

at most two iterations the modified Q will have n more non-zero entries than Q.

To illustrate the methods described above consider the simple metapopulation model (Example 1

of the paper), which is a birth-death process with S = {1, 2, . . . , n} and with birth and death rates

λi = (c/n)i(n − i) and µi = ei. The quasi-stationary distribution is easily evaluated using code

sequence (1) after setting up Q as follows:

Q=zeros(n,n);

i=1; lambda=(c/n)*i*(n-i); mu=e*i;

Q(i,i+1)=lambda; Q(i,i)=-(lambda + mu);

for i=2:n-1

lambda=(c/n)*i*(n-i); mu=e*i;

Q(i,i+1)=lambda; Q(i,i-1)=mu; Q(i,i)=-(lambda + mu);

4

end

i=n; mu=e*i; Q(i,i-1)=mu; Q(i,i)=-mu;

The result is illustrated in Figures 1 and 2 of the paper.

For the elaboration in which number of patches available for occupancy varies (Example 2 of the

paper), we have a two-dimensional state space consisting of a set S = {(x, y) : 1 ≤ x ≤ y ≤ n}

(irreducible) of transient states and a set A = {(0, y) : 0 ≤ y ≤ n} (irreducible) in which the process

is eventually trapped. Recall that the non-zero transition rates are

q((x, y); (x, y + 1)) = r(n − y),

q((x, y); (x, y − 1)) = d(y − x),

q((x, y); (x − 1, y − 1) = dx,

q((x, y); (x + 1, y)) = (c/n)x(y − x),

q((x, y); (x − 1, y)) = ex.

Thus, to evaluate the quasi-stationary distribution we would first set up Q rendered as a square matrix

over S ′ = {1, 2, . . . , 1
2n(n + 1)} using the bijection f(x, y) := y + 1

2(x − 1)(2n − x). For example, for

the colonization transition we would have

for y=2:n

for x=1:(y-1)

i=index([x,y,n]); j=index([x+1,y,n]);

Q(i,j)=(c/n)*x*(y-x);

end

end

with the bijection defined elsewhere as

function i=index(state)

x=state(1); y=state(2); n=state(3);

i=x+(y-1)*(2*n-y)/2;

end

We could then use code sequence (1), as before. If n is large we would use sparse matrix code,

preceding the above with Q=sparse([]) and then using code sequence (2), or, better, setting up the

rows and columns “manually”:

5

Q_size=n*(n+1)/2;

Qnz=0;

.....

for y=2:n

for x=1:(y-1)

Qnz=Qnz+1;

Q_row(Qnz)=index([x,y,n]);

Q_col(Qnz)=index([x+1,y,n]);

Q_val(Qnz)=(c/n)*x*(y-x);

end

end

.....

Q=sparse(Q_row,Q_col,Q_val,Q_size,Q_size,Qnz);

We performed numerical experiments evaluating the quasi-stationary distribution on a PC equipped

with an IntelR© Xeon R© 6-core 3.33 GHz processor, using parameters e = 0.1, c = 0.6, d = 0.1 and

r = 0.5. Table 1 compares the execution time of eig versus eigs (with the default of m = 20 for the

Arnoldi parameter) for the n-patch metapopulation model with different values of n. It is clear that

sparse methods are considerably more efficient when the number of states is large. Table 2 compares

the time needed to set up Q as a sparse matrix and the time to evaluate the quasi-stationary distribu-

tion using eigs (m = 20) for the n-patch metapopulation model with various values of n. Listed also is

the corresponding size of the state space and the number of non-zero elements of Q (= n(3n−2)). It is

clear that the execution time is dominated by the transition matrix set-up time. Figure 1 displays the

average time, each average taken over 10 runs, needed to evaluate the quasi-stationary distribution of

the 100-patch metapopulation model using eigs for different values of m. Recall that when m is large

the time taken to evaluate the eigenvectors of H will be predominant, while if too small the number

of outer iterations might be prohibitively large. Notice that MATLAB’s default value of m = 20 is

close to optimal for our problem. The quasi-stationary distribution of the 100-patch metapopulation

model evaluated using eigs with m = 20 is illustrated in Figure 3 of the paper.

6

n |S| Execution time

eig eigs

20 400 0.056 0.024

30 900 0.281 0.042

50 2500 2.618 0.094

100 10000 118.294 0.300

150 22500 1120.634 0.702

Table 1. Time (in seconds) to evaluate the quasi-stationary dis-

tribution using eig and eigs (with m = 20) in the n-patch meta-

population model for various values of n. Listed also is the corre-

sponding size of the state space.

n |S| nnz(Q) Execution time

Q setup qsd u

20 400 1,160 0.012 0.024

30 900 2,640 0.033 0.042

50 2500 7,400 0.157 0.094

100 10,000 29,800 1.977 0.300

150 22,500 67,200 16.013 0.702

200 40,000 119,600 59.810 1.715

300 90,000 269,400 340.285 5.720

500 250,000 749,000 2687.983 8.584

Table 2. Time (in seconds) to set up Q as a sparse matrix and

the time to evaluate the quasi-stationary distribution using eigs

(with m = 20) in the n-patch metapopulation model for various

values of n. Listed also is the corresponding size of the state space

and the number of non-zero elements of Q.

7

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
v
er

a
g
e

ex
ec

u
ti
o
n

ti
m

e
(s

ec
o
n
d
s)

Fig 1. Execution times (each averaged over 10 runs) for evaluating

the quasi-stationary distribution of the 100-patch metapopulation

model using eigs for values of m.

8

References

[1] Golub, H.G. and van Loan, C.F. (1996). Matrix Computations. 3rd ed. Baltimore: Johns Hopkins

University Press.

[2] Grassmann, W.K. Taksar, M.I. and Heyman, D.P. (1985). Regenerative analysis and steady

state distributions for Markov chains. Oper. Res. 33, 1107-1116.

[3] Lehoucq, R.B. and Sorensen, D.C. (1996). Deflation techniques for an implicitly restarted Arnoldi

iteration SIAM. J. Matrix Anal. & Appl. 17, 789-821.

[4] O’Cinneide, C.A. (1993). Entrywise perturbation theory and error analysis for Markov chains.

Numer. Math. 65, 109-120.

[5] Pollett, P.K. and Stewart, D.E. (1994). An efficient procedure for computing quasistationary

distributions of Markov chains with sparse transition structure. Adv. Appl. Probab. 26, 68-79.

[6] Seneta, E. (1998). Complementation in stochastic matrices and the GTH algorithm. SIAM J.

Matrix Anal. Appl. 19, 556-563.

9

