
Welcome to the

12th Cologne-Twente Workshop

on Graphs and Combinatorial Optimization (CTW 2013).

CTW 2013 takes place at the University of Twente, Enschede, Netherlands, from May 21 to
May 23, 2013.

This volume collects the extended abstracts of the contributions that have been selected for
presentation at the workshop.

As it was the case with previous CTWs, we will edit a special edition of Discrete Applied
Mathematics for CTW 2013. Hereby, we invite all participants to submit full-length papers
related to the topics of the workshop.

Program Committee.

• Ulrich Faigle (University of Cologne, Germany)

• Johann L. Hurink (University of Twente, Enschede, Netherlands, co-chair)

• Renato de Leone (Università degli Studi di Camerino, Italy)

• Leo Liberti (École Polytechnique, Paris, France)

• Bodo Manthey (University of Twente, Enschede, Netherlands, co-chair)

• Gaia Nicosia (Università degli studi Roma Tre, Italy)

• Andrea Pacifici (Università degli Studi di Roma “Tor Vergata”, Italy)

• Stefan Pickl (Universität der Bundeswehr München, Germany)

• Giovanni Righini (Università degli Studi di Milano, Italy)

• Rainer Schrader (University of Cologne, Germany)

• Rüdiger Schultz (University Duisburg-Essen, Germany)

Organizing Committee.

• Kamiel Cornelissen

• Ruben Hoeksma

• Johann L. Hurink

• Bodo Manthey

We thank Marjo Mulder for her help. We gratefully acknowledge the financial support from
the Centre for Telematics and Information Technology (CTIT) of the University of Twente,
Paragon Decision Technology, ORTEC, and Stichting Universiteitsfonds Twente.

Johann Hurink Bodo Manthey

List of Abstracts

Nair M. M. de Abreu, Maria A. A. de Freitas, Renata R. Del-Vecchio
Simultaneously integral graphs on three associated matrices 7

Stephan Dominique Andres, Winfried Hochstättler
Perfect digraphs and a strong perfect digraph theorem 11

Danilo Artigas, Simone Dantas, Mitre C. Dourado, Jayme L. Szwarcfiter
Geodetic sets and periphery . 15

D. Bakarcic, G. Di Piazza, I. Méndez-Dı́az, P. Zabala
An IP based heuristic algorithm for the vehicle and crew scheduling pick-up and
delivery problem with time windows . 19

Karl Bringmann, Benjamin Doerr, Adrian Neumann, Jakub Sliacan
Online checkpointing with improved worst-case guarantees 23

Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Röglin
Smoothed analysis of the successive shortest path algorithm 27

Christoph Buchheim, Laura Klein
The spanning tree problem with one quadratic term 31

Christina Büsing, Fabio D’Andreagiovanni, Annie Raymond
Robust optimization under multiband uncertainty 35

Eglantine Camby, Oliver Schaudt
Connected dominating set in graphs without long paths and cycles 39

Márcia R. Cerioli, Daniel F. D. Posner
Total L(2, 1)-coloring of graphs . 43

Sourav Chakraborty, Akshay Kamath, Rameshwar Pratap
Testing uniformity of stationary distribution . 47

Yonah Cherniavsky, Avraham Goldstein, Vadim E. Levit
Balanced Abelian group valued functions on directed graphs: Extended abstract . . 51

Hebert Coelho, Luerbio Faria, Sylvain Gravier, Sulamita Klein
An oriented 8-coloring for acyclic oriented graphs with maximum degree 3 55

Stefano Coniglio
Bound-optimal cutting planes . 59

Fernanda Couto, Luerbio Faria, Sulamita Klein, Loana T. Nogueira, Fábio Protti
On specifying boundary conditions for the graph sandwich problem 63

3

Jean-François Couturier, Mathieu Liedloff
A tight bound on the number of minimal dominating sets in split graph 67

Radu Curticapean, Marvin Künnemann
A quantization framework for smoothed analysis on Euclidean optimization problems 71

Elias Dahlhaus
Linear time and almost linear time cases for minimal elimination orderings 75

S. Dantas, C. M. H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V. F. dos Santos,
D. Sasaki
On total coloring and equitable total coloring of cubic graphs with large girth . . . 79

Ekrem Duman, Ahmet Altun
Routing ATM loading vehicles . 85

Michael Etscheid
Performance guarantees for scheduling algorithms under perturbed machine speeds 89

Ulrich Faigle, Alexander Schönhuth
Observation and evolution of finite-dimensional Markov systems 93

Philipp von Falkenhausen, Tobias Harks
Optimal cost sharing for capacitated facility location games 99

Ángel Felipe Ortega, M. Teresa Ortuño Sánchez, Gregorio Tirado Domı́nguez, Giovanni
Righini
Exact and heuristic algorithms for the green vehicle routing problem 103

Mirjam Friesen, Dirk Oliver Theis
Fooling-sets and rank in nonzero characteristic . 107

Giulia Galbiati, Stefano Gualandi
Coloring of paths into forests . 113

Valentin Garnero, Ignasi Sau, Dimitrios M. Thilikos
A linear kernel for planar red-blue dominating set 117

Ismael González Yero, Amaurys Rondón Aguilar
The double projection method for some domination related parameters in Cartesian
product graphs . 121

Ruben Hoeksma, Marc Uetz
Two-dimensional optimal mechanism design for a single machine scheduling problem125

Olivier Hudry
Application of the descent with mutations (DWM) metaheuristic to the computation
of a median equivalence relation . 129

Sebastiaan J. C. Joosten, Hans Zantema
Relaxation of 3-partition instances . 133

K. Karam, D. Sasaki
Semi blowup and blowup snarks and Berge-Fulkerson Conjecture 137

Roland Kaschek, Alexander Krumpholz
An extension of the Collatz function . 141

4

Imran Khaliq, Gulshad Imran
Constructing strategies in subclasses of McNaughton games 145

Philipp Klodt, Anke van Zuylen
Toward a precise integrality gap for triangle-free 2-matchings 151

Monique Laurent, Zhao Sun
Handelman’s hierarchy for the maximum stable set problem 155

Maciej Lískiewicz, Martin R. Schuster
A new upper bound for the traveling salesman problem in cubic graphs 159

Ovidiu Listes
Manufacturing process flexibility with robust optimization using AIMMS 163

Dmitrii Lozovanu, Stefan Pickl
Optimal paths in networks with rated transition time costs 165

Ján Maňuch, Murray Patterson, Roland Wittler, Cedric Chauve, Eric Tannier
Linearization of ancestral multichromosomal genomes 169

Isabel Méndez-Dı́az, Federico Pousa, Paula Zabala
A branch-and-cut algorithm for the angular TSP 175

Xavier Molinero, Fabián Riquelme, Maria Serna
Star-shaped mediation in influence games . 179

Haiko Müller, Samuel Wilson
Characterising subclasses of perfect graphs with respect to partial orders related to
edge contraction . 183

Andrea Munaro
The VC-dimension of graphs with respect to k-connected subgraphs 187

S. Pirzada, Muhammad Ali Khan, E. Sampathkumar
Coloring of signed graphs . 191

Alain Quilliot, Djamal Rebaine
Approximation results for the linear ordering problem on interval graphs 197

Fabio Roda
Hazmat transportation problem: instance size reduction through centrality erosion . 201

Uéverton dos Santos Souza, Fábio Protti, Maise Dantas da Silva
Parameterized and/or graph solution . 205

Thatchaphol Saranurak
Finding the colors of the secret in Mastermind . 209

Eckhard Steffen
1-factors and circuits of cubic graphs . 213

Lara Turner, Matthias Ehrgott, Horst W. Hamacher
On the generality of the greedy algorithm for solving matroid problems 217

Sven de Vries
Graph products for faster separation of 1-wheel inequalities 219

Ayumi Igarashi, Yoshitsugu Yamamoto
Computational complexity of the average covering tree value 223

5

Simultaneously integral graphs on three
associated matrices

Nair M. M. de Abreu1, Maria A. A. de Freitas1, and Renata R.
Del-Vecchio2

1Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2Universidade Federal Fluminense, Niteroi, Brazil

In this article, we construct graphs that are simultaneously integral, Laplacian
integral and signless Laplacian integral. The graphs with this property, known
in the literature, are regular or bipartite, unless by a few exceptions. We obtain
infinite families of such graphs, that are neither regular nor bipartite, from join of
regular graphs.

1 Introduction

Let G = (V,E) be a simple graph on n vertices and D(G) = diag(d1, . . . , dn) be the diagonal
matrix of its vertex degrees. Let A(G), L(G) = A(G) −D(G) and Q(G) = A(G) +D(G) be
the adjacency, Laplacian and the signless Laplacian matrices of G, respectively. For M(G)
= A(G), L(G) or Q(G), let PM (G, x) be the characteristic polynomial of M(G) and SpM (G)
the spectrum of M(G). Since 1974, when Harary and Schwenk posed the question Which
graphs have integral spectra? [5], the search for graphs whose adjacency eigenvalues or Laplacian
eigenvalues are all integers (here called A-integral graphs and L-integral graphs, respectively)
has been done. More recently, Q-integral graphs (graphs whose signless Laplacian spectrum
consists entirely of integers) were introduced in the literature [2, 6, 7, 8, 3].
If G is a r-regular graph,

PA(G, x) = PQ(G, x+ r) and PL(G, x) = (−1)nPQ(G, 2r − x).

So, for regular graphs, these three concepts coincide. If G is a bipartite graph, PL(G, x) =
PQ(G, x); so, L-integral bipartite graphs and Q-integral bipartite graphs are the same.
A graph is called ALQ-integral graph when it is simultaneously A, L and Q-integral. Among

all 172 connected Q-integral graphs up to 10 vertices, there are 42 ALQ-integral graphs, but
only one of them is not regular and not bipartite [7]. Our aim is to show how to construct
infinite families of ALQ-integral graphs, none of them regular or bipartite.
Firstly, in Section 2, we give ALQ-integrality conditions for join of regular graphs and we

build some infinite families of ALQ-integral graphs, from complete graphs, complete bipartite
graphs and cycles. In Section 3 we present ALQ-integral infinite families of complete split
graphs, multiple complete split-like graphs and multiple extended split-like graphs. All those
families were defined in [4].

7

2 ALQ-integral graphs obtained by join of regular graphs

Recall that the join of graphs G1 and G2 is the graph G1 ∨ G2 obtained from G1 ∪ G2 by
joining each vertex of G1 with every vertex of G2. For i = 1, 2, let Gi be a ri-regular graph
on ni vertices. Note that if r1 6= r2 and r1 − r2 6= n1 − n2, the graph G1 ∨ G2 is not
regular, nor bipartite. It is well known that if G1 and G2 are Laplacian integral graphs then
G1 ∨G2 is also a Laplacian integral graph. In the case that G1 and G2 are regular graphs, the
characteristic polynomial of the matrix A(G1 ∨G2) is given in [1]. Under the same conditions,
the characteristic polynomial of the matrix Q(G1 ∨G2) is obtained in [3].
As a consequence of these two results, we are able to provide a ALQ-integrality condition

for join of regular graphs.

Proposition 2.1. For i = 1, 2, let Gi be a ri-regular graph on ni vertices. The graph G1∨G2

is ALQ-integral if and only if G1 and G2 are ALQ-integral and (r1− r2)
2+4n1n2 and ((2r1−

n1)− (2r2 − n2))
2 + 4n1n2 are perfect squares.

Proposition 2.2. Let G1 and G2 be regular ALQ-integral graphs of same degree. The graph
G1 ∨G2 is ALQ-integral if and only if |G1| |G2| is a perfect square.

Using the previous proposition, we present two distinct infinite families of ALQ-integral
graphs, in the corollary below.

Corollary 2.3. Let j, n ∈ N.

1. The graph Kj ∨ nKj is ALQ-integral if and only if n is a perfect square;

2. If n = j(j+1)
2 , the graph Kj,j ∨ nKj+1 is ALQ-integral.

Remark 2.4. The particular case j = 2 of item 1 in Corollary 2.3 was proved in [8].

It is known that Cn is ALQ-integral only for n = 3, 4 or 6. As C3 coincides with K3,
the construction of ALQ-integral graphs from join of copies of C3 have been examined in the
corollary above. In the following corollary we present other ALQ-integral graphs, constructed
from ALQ-cycles.

Corollary 2.5. Let n, p, q ∈ N.

1. The graph Cj ∨ nCj, for j = 4 or 6 is ALQ-integral if and only if n is a perfect square;

2. If n = 3(2q+1), the graphs C3 ∨ nC4 and C4 ∨ nC3 are ALQ-integral;

3. If n = 2(2p+1), the graphs C3 ∨ nC6 and C6 ∨ nC3 are ALQ-integral;

4. If n = 2(2p+1)3(2q+1), the graphs C4 ∨ nC6 and C6 ∨ nC4 are ALQ-integral.

3 Split and split-like ALQ-integral graphs

In 2002, Hansen et al [4] characterized integral graphs in the classes of complete split graphs,
multiple complete split-like graphs and multiple extended split-like graphs. In [3] all signless
Laplacian integral graphs in these classes were characterized. We remember the definitions of
the three classes that we need for next results.

8

Definition 3.1. For a, b, n ∈ N, we have the following classes of graphs:

• the complete split graph CSa
b
∼= Ka ∨Kb;

• the multiple complete split-like graph MCSa
b,n

∼= Ka ∨ (nKb);

• the multiple extended complete split-like graph MECSa
b,n

∼= Ka ∨ (n(Kb ×K2)).

Applying Proposition 2.1, we are able to characterize the ALQ-integral graphs in the classes
above and, in each one, we obtain infinite families of such graphs. Our task in each case, in
order to build ALQ-integral graphs, is to solve a system of non linear diophantine equations.

Proposition 3.2. For a, b ∈ N, the complete split graph CSa
b is ALQ-integral if and only if

(b − 1)2 + 4ab and (a + b − 2)2 + 4ab are perfect squares. Moreover, for jk ∈ N, if one of the
conditions below holds, CSa

b is Q-integral:

1. a = 3jk − 2, b = 2jk and jk ∈ N satisfies

jk+1 = 127jk + 24mk − 45
mk+1 = 672jk + 127mk − 240,

(1)

with (j0,m0) = (1, 3) or (10, 51);

2. a = 3jk, b = 2jk − 1 and jk ∈ N satisfies

jk+1 = 127jk + 484mk − 45
mk+1 = 336jk + 127mk − 120,

(2)

with (j0,m0) = (3, 14).

Example 3.3. Figure 1 shows the ALQ-integral complete split graph G = CS9
5 : SpA(G) =

(9, 08,−14,−5), Sp L(G) = (145, 58, 0) and SpQ(G) = (20, 124, 58, 2), where exponents denote
multiplicities.

Proposition 3.4. For a, b, n ∈ N, the multiple complete split-like graph MCSa
b,n is ALQ-

integral if and only if (b − 1)2 + 4abn and (a + 2(b − 1) − nb)2 + 4abn is a perfect square.
Moreover, for j ∈ N, if one of the conditions below holds, MCSa

b,n is Q-integral:

1. a = n, b = 1;

2. n ≥ 2, a = (n− 1)b+ 1;

3. n = 2, a = jk, b = 3(jk + 1) and jk ∈ N satisfies

jk+1 = 23jk + 4mk + 12
mk+1 = 132jk + 23mk + 72,

(3)

with (j0,m0) = (4, 26) or (20, 118);

4. n = 3, a = jk, b = 2(jk + 2) and jk ∈ N satisfies

jk+1 = 127jk + 24mk + 135
mk+1 = 672jk + 127mk + 720,

(4)

with (j0,m0) = (0,±3) or (12,±69).

9

Figure 1: CS9
5 ,MCS7

3,3 and MECS6
2,2

Example 3.5. The multiple complete split-like graph G = MCS7
3,3, depicted in Figure 1,

is ALQ-integral: SpA(G) = (9, 22, 06,−16,−7), Sp L(G) = (16, 106, 96, 72, 0) and SpQ(G) =
(18, 112, 96, 86, 2).

Proposition 3.6. For a, b, n ∈ N, the multiple extended complete split-like graph MECSa
b,n is

ALQ-integral if and only if b2+8abn and (a+2b(n− 1))2+8ab are perfect squares. Moreover,
for a = (2n− 1)b, MECSa

b,n is ALQ-integral.

Example 3.7. Figure 1 shows the ALQ-integral multiple extended complete split-like graph
G = MECS6

2,2: SpA(G) = (8, 2, 09,−22,−6), Sp L(G) = (14, 102, 89, 6, 0) and SpQ(G) =

(16, 10, 89, 62, 2).

Remark 3.8. In analogy to the result obtained in the Proposition 3.2, we investigate the graphs
of type Ka ∨C4, and Ka ∨C6, for a ∈ N. For each case, instead of infinite families, we found
only one graph: K2 ∨ C4, and K4 ∨ C6, respectively, which are both regular and non-bipartite.

Acknowledgement: The authors are indebted to CNPq(the Brazilian Council for Scientific
and Technological Development) for all the support received for this research.

References

[1] Cvetković, D., M. Doob, H. Sachs, “Spectra of graphs-Theory and application,” Deutscher Verlag
der Wissenschaften-Academic Press, Berlin-New York, 1980; second edition 1982; third edition,
Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.

[2] Cvetković, D., P. Rowlinson and S. Simić, Signless Laplacian of finite graphs, Linear Algebra and
its Applications 423 (2007), 155–171.

[3] Freitas, M.A.A., N.M.M. de Abreu, R.R. Del-Vecchio and S.Jurkiewicz, Infinite families of Q-
integral graphs, Linear Algebra Appl. 432 (2010), 2353–2360.

[4] Hansen,P. H. Melot and D, Stevanović, Integral complete split graphs, Univ. Beograd, Publ. Elek-
trotehn. Fak. Ser. Mat. 13 (2002), 89–95.

[5] Harary, F. and A.J. Schwenk, Which graphs have integral spectra?, em Bari, R., Harary, F.(Eds),
“Graphs and Combinatorics,” Springer, Berlim, 1974, 45–51.

[6] Simić, S. and Z. Stanić, Q-integral graphs with edge-degrees at most five, Discrete Math. 308 (2008),
4625–4634.

[7] Stanić, Z. There are exactly 172 connected Q-integral graphs up to 10 vertices, Novi Sad J. Math.
37 n. 2 (2007), 193–205.

[8] Stanić, Z., Some results on Q-integral graphs, Ars Combinatoria 90 (2009), 321–335.

10

Perfect digraphs and a strong perfect
digraph theorem

Stephan Dominique Andres1 and Winfried Hochstättler1

1Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Universitätsstr. 1, 58084 Hagen,
Germany

1 Introduction

Replacing the chromatic number by the dichromatic number introduced by Neumann-Lara [6]
we generalize the notion of perfectness of a graph to digraphs. We give a characterization
of perfect digraphs using the notion of perfect graphs. Applying the Strong Perfect Graph
Theorem [3], this yields a characterization of perfect digraphs by a set of forbidden induced
subdigraphs. Furthermore, modifying a recent proof of Bang-Jensen et al. [1] we show that
the recognition of perfect digraphs is co-NP-complete.

2 A strong perfect digraph theorem

First we fix some notation. We only consider digraphs without loops. The clique number
ω(D) of a digraph D is the size of the largest bidirectionally complete subdigraph of D. The
dichromatic number χ(D) of D is the smallest cardinality |C| of a colour set C, so that it is
possible to assign a colour from C to each vertex of D such that for every colour c ∈ C the
subdigraph induced by the vertices coloured with c is acyclic, i.e. it does not contain a directed
cycle. The clique number is an obvious lower bound for the dichromatic number. D is called
perfect if, for any induced subdigraph H of D, χ(H) = ω(H).

An (undirected) graph G = (V,E) can be considered as the symmetric digraph DG = (V,A)
with A = {(v, w), (w, v) | vw ∈ E}. In the following, we will not distinguish between G and
DG. In this way, the dichromatic number of a graph G is its chromatic number χ(G), the clique
number of G is its usual clique number ω(G), and G is perfect as a digraph if and only if G is
perfect as a graph. For us, an edge vw in a digraph D = (V,A) is the set {(v, w), (w, v)} ⊆ A of
two antiparallel arcs, and a single arc in D is an arc (v, w) ∈ A with (w, v) /∈ A. The oriented
part O(D) of a digraph D = (V,A) is the digraph (V,A1) where A1 is the set of all single arcs
of D, and the symmetric part S(D) of D is the digraph (V,A2) where A2 is the union of all
edges of D. Obviously, S(D) is a graph, and by definition we have

Lemma 2.1. For any digraph D, ω(D) = ω(S(D)).

An odd hole is an undirected cycle Cn with an odd number n ≥ 5 of vertices. An odd antihole
is the complement of an odd hole (without loops). A filled odd hole/antihole is a digraph H,
so that S(H) is an odd hole/antihole. For n ≥ 3, the directed cycle on n vertices is denoted
by ~Cn. Furthermore, for a digraph D = (V,A) and V ′ ⊆ V , by D[V ′] we denote the subdigraph
of D induced by the vertices of V ′.

11

Theorem 2.2. A digraph D = (V,A) is perfect if and only if S(D) is perfect and D does not
contain any directed cycle ~Cn with n ≥ 3 as induced subdigraph.

Proof. Proof. Assume S(D) is not perfect. Then there is an induced subgraph H = (V ′, E′)
of S(D) with ω(H) < χ(H). Since S(D[V ′]) = H, we conclude by Lemma 2.1,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′]),

therefore D is not perfect. If D contains a directed cycle ~Cn with n ≥ 3 as induced subdigraph,
then D is obviously not perfect, since ω(~Cn) = 1 < 2 = χ(~Cn).

Now assume that S(D) is perfect but D is not perfect. It suffices to show that D contains
an induced directed cycle of length at least 3. Let H = (V ′, A′) be an induced subdigraph
of D such that ω(H) < χ(H). Then there is a proper colouring of S(H) = S(D)[V ′] with
ω(S(H)) colours, i.e., by Lemma 2.1, with ω(H) colours. This cannot be a feasible colouring
for the digraph H. Hence there is a (not necessarily induced) monochromatic directed cycle
~Cn with n ≥ 3 in O(H). Let C be such a cycle of minimal length. C cannot have a chord that
is an edge vw, since both terminal vertices v and w of vw are coloured in distinct colours. By
minimality, C does not have a chord that is a single arc. Therefore, C is an induced directed
cycle (of length at least 3) in H, and thus in D.

Corollary 2.3. If D is a perfect digraph, then any feasible colouring of S(D) is also a feasible
colouring for D.

By the Strong Perfect Graph Theorem [3] and Theorem 2.2 we obtain:

Corollary 2.4. A digraph D = (V,A) is perfect if and only if it does neither contain a filled
odd hole, nor a filled odd antihole, nor a directed cycle ~Cn with n ≥ 3 as induced subdigraph.

3 Some complexity issues

Corollary 2.3 and the fact that k-colouring of perfect graphs is in P (see [4]) implies the
following.

Corollary 3.1. k-colouring of perfect digraphs is in P for any k ≥ 1.

To test whether D does not contain an induced directed cycle ~Cn, n ≥ 3, is a co-NP-
complete problem by a recent result of Bang-Jensen et al. ([1], Theorem 11). The proof of
Bang-Jensen et al. can be easily modified to prove the following.

Theorem 3.2. The recognition of perfect digraphs is co-NP-complete.

The preceding result can be obtained by a reduction of 3-SAT to recognition of non-perfect
digraphs. This result is in contrast to the result of Chudnovsky et al. [2] which, together with
the Strong Perfect Graph Theorem [3], states that the recognition of perfect graphs is in P.

Note that the perfectness of digraphs does not behave as well as the perfectness of graphs in
a second aspect: there is no analogon to Lovasz’ Weak Perfect Graph Theorem [5]. A digraph
may be perfect but its complement may be not perfect. An easy instance of this type is the
directed 4-cycle ~C4, which is not perfect, and its complement H, which is perfect.

12

References

[1] J. Bang-Jensen, F. Havet, N. Trotignon. Finding an induced subdivision of a digraph.
Manuscript, submitted for publication, 2010.

[2] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković. Reognizing Berge graphs.
In Combinatorica 25:143–186, 2005.

[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem.
In Ann. Math. 164:51–229, 2006.

[4] M. Grötschel, L. Lovász, A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion. Second corrected edition, Springer-Verlag, Berlin Heidelberg New York, (1993).

[5] L. Lovász. Normal hypergraphs and the perfect graph conjecture. In Discrete Math.
2:253–267, 1972.

[6] V. Neumann-Lara. The dichromatic number of a digraph. In J. Combin. Theory B
33:265–270, 1982.

13

Geodetic Sets and Periphery

Danilo Artigas1, Simone Dantas2, Mitre C. Dourado3,4, and Jayme L.
Szwarcfiter3,4,5

1Instituto de Ciência e Tecnologia, Universidade Federal Fluminense, Brazil
2Instituto de Matemática e Estat́ıstica, Universidade Federal Fluminense, Brazil

3Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil
4NCE, Universidade Federal do Rio de Janeiro, Brazil

5COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Brazil

Let G = (V,E) be a finite, simple and connected graph, and S ⊆ V . The geodetic
closed interval I[S] is the set of all vertices lying on a shortest path between any
pair of vertices of S. The set S is geodetic if I[S] = V . Let S ⊆ V , its monophonic
closed interval J [S] is the set of all vertices lying on an induced path between any
pair of vertices of S. The set S is monophonic if J [S] = V . The eccentricity of a
vertex v is the number of edges in the greatest shortest path between v and any
vertex w of G. The contour Ct(G) of G is the set formed by vertices v such that
no neighbor of v has eccentricity greater than v. The diameter diam(G) of G is
the maximum eccentricity of the vertices in V . The periphery of G is the set of
vertices whose eccentricity is equal to the diameter of G. We consider the problem
of determining whether the periphery of a graph is geodetic. First, we establish a
relation between the diameter and the geodeticity of the periphery of a graph. We
show that the periphery is geodetic for graphs with diameter k = 2 and that it is
not necessarily geodetic for k ≥ 3. For k = 3, we characterize the graphs whose
periphery is not geodetic. Similar results do not extend for graphs with diameter
4. These results lead us to solve the problem for classes of graphs like cographs,
chordal, split and threshold graphs. We also consider the monophonic convexity
and describe similar results as those for the geodesic convexity.

1 Introduction

Recent works points out the increasing importance of establishing a parallel between concepts of
discrete and continuous mathematic like distance and convexity. Some of the early papers that
generalized the Euclidean concepts of convex sets to graph theory are [9, 10, 7]. But, convexity
in graphs was also studied under different aspects like geodetic sets and hull number [4, 8].
For general information about convexity see [11].
Let G = (V,E) be a graph with vertex set V and edge set E, where |V | = n and |E| = m.

In this work, all graphs are finite, simple and connected. We say that G[S] is the subgraph of
G induced by S.

15

A geodesic between v and w in G is a shortest path between v and w in the graph. The
geodetic interval I[v, w] is the set of all vertices lying on a geodesic between v and w. Given a
set S, I[S] =

⋃
u,v∈S

I[u, v]. If I[S] = S, then S is a g-convex set. If I[S] = V , then S is geodetic.

Analogously, we present definitions for the monophonic convexity. The monophonic interval
J [v, w] is the set of all vertices lying on an induced path between v and w. Given a set S, J [S]
=

⋃
u,v∈S

J [u, v]. If J [S] = S, then S is a m-convex set. If J [S] = V , then S is monophonic.

The length of a path P between two vertices v and w, denoted by |P |, is the number of edges
in P . The distance in G = (V,E) between v and w, denoted by dG(v, w), is the length of a
geodesic between v and w in G. The eccentricity of v ∈ V , denoted by eccG(v) is the largest
distance from v to any other vertex in G, i.e., ecc(v) = max{dG(v, w)|w ∈ V }. The diameter
of G, diam(G), is equal to max{dG(v, w)| v, w ∈ V }. The radius of G, rad(G), is equal to
min{eccG(v)| v ∈ V }. For simplicity, we omit G from the notation above. For basic concepts
in graph theory see [2].
A vertex v of G such that no neighbor of v has an eccentricity greater than v is called contour

vertex of G. The contour Ct(G) of G is the set formed by all the contour vertices of G. The
periphery of G is the set of vertices whose eccentricity is equal to the diameter of G.
Contour and periphery sets are well known subjects in the literature. Some examples are [3,

4, 5, 6]. The problem of determining whether Ct(G) is a geodetic set was studied in [1]. It was
shown that there exists a strict relation between the diameter of a graph and the geodeticity
of its contour. It was proved that if the diam(G) ≤ 4 then Ct(G) is geodetic and that Ct(G)
is not necessarily geodetic if diam(G) > 4. Some graph classes were also considered and it was
shown that: the contour of a cochordal graph is geodetic; the contour of a planar graph G is
not necessarily geodetic if diam(G) ≥ 5; the contour of a bipartite graph G is not necessarily
geodetic if diam(G) ≥ 8; and the contour of a parity graph G is not necessarily geodetic.
In this work we extend these results to the periphery of a graph G. We show that if

diam(G) ≤ 2 then Per(G) is geodetic, and Per(G) is not necessarily geodetic if diam(G) > 2.
Particularly, we characterize the graphs G with diam(G) = 3 such that Per(G) is not geodetic.
These results lead us to solve the problem for classes of graphs like cographs, chordal, split
and threshold graphs. Finally, we consider the problem of determining whether Per(G) is a
monophonic set. Some proofs will be omitted due to space limits.

2 Periphery × geodetic and monophonic sets

The next results establish limits to the relation between the periphery Per(G) and the diameter
of a graph G.

Theorem 2.1. If diam(G) ≤ 2, then Per(G) is a geodetic set.

Proof. The case where diam(G) = 1 is trivial. Consider diam(G) = 2. The vertices v such that
ecc(v) = 1 are adjacent to two non-adjacent vertices w1, w2 such that ecc(w1) = ecc(w2) = 2.
Hence v ∈ I[w1, w2].

This result corresponds to a new proof of the result of [4] for the case of graphs with diameter
less than or equal to 2.
The above bound is tight since, for each k ≥ 3 we can generate a graph G with diameter

k such that Per(G) is not geodetic. The graph G = (V,E) depicted in Figure 1(a) is a

16

graph with diameter 3 such that Per(G) = {a, e}, and I[Per(G)] 6= V because c /∈ I[a, e]. In
Figure 1(b) we construct a more general graph H = (V ′, E′), with diameter k ≥ 3, such that
I[Per(H)] 6= V ′.

a b

c

d e
k-2 vertices{

. . .

(a) (b)

Figure 1: (a) Graph G, with diameter 3, such that Per(G) is not geodetic; (b) Graph H, with
diameter k, such that Per(H) is not geodetic.

Consequently,

Lemma 2.2. For every k ≥ 3, there exists a graph G = (V,E) with diam(G) = k such that
Per(G) is not a geodetic set.

Graphs G with diam(G) = 3 such that Per(G) is not geodetic can be characterized as
follows.

Theorem 2.3. Let G = (V,E) be a graph such that diam(G) = 3. Then Per(G) is geodetic if
and only if there does not exist a contour vertex w ∈ V such that ecc(w) = 2.

We observe that Theorem 2.3 could not be generalized for graphs with diameter 4. For
example, in Figure 1(a), if we subdivide the edges bc, bd and cd then we obtain a graph G with
diam(G) = 4 with a contour vertex of eccentricity 3 such that I[Per(G)] is geodetic.
Similar arguments used in this section could be applied to monophonic convexity. Hence,

we have the following results.

Theorem 2.4. If diam(G) ≤ 2, then Per(G) is a monophonic set.

Lemma 2.5. For every k ≥ 3, there exists a graph G = (V,E) such that Per(G) is not a
monophonic set.

3 Periphery × graph classes

Theorem 2.1 states that for graphs with diameter equal to 2, Per(G) is a geodetic set. Therefore
we can establish the following corollaries.

Corollary 3.1. If G is a cograph, then Per(G) is geodetic.

Corollary 3.2. If G is a threshold graph, then Per(G) is geodetic.

The graph of Figure 1(a), whose periphery is not geodetic, is a split graph and the graph of
Figure 1(b) is a chordal graph. In [3], the authors proved that the contour of a chordal graph
is geodetic. Hence this result shows a graph class for which the contour is a geodetic set but
the periphery is not necessarily geodetic. Particularly, we conclude with the next corollary.

17

Corollary 3.3. For every k ≥ 3, there exists a chordal graph G = (V,E) such that Per(G) is
not geodetic.

Remark 3.4. If T = (V,E) is a tree with diam(G) = k, k ≥ 3, then Per(T) is geodetic if and
only if ecc(v) = diam(T) for all leaves v of T .

4 Conclusion

We have considered the problem of deciding whether the periphery of a graph is a geodetic or a
monophonic set by establishing limits for the diameter of a graph. We have also characterized
graphs with diam(G) = 3 such that Per(G) is not geodetic. We show that the same conditions
do not generalize for graphs with diameter equal to 4.
In addition, we have described graphs, for which the contour is geodetic and the periphery

is not a geodetic set.

References

[1] D. Artigas, S. Dantas, M.C. Dourado, J.L. Szwarcfiter, and S. Yamagu-
chi. On the contour of graphs. Discrete Applied Mathematics, 2013.
http://dx.doi.org/10.1016/j.dam.2012.12.024, in press.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[3] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, and C. Seara. Geodeticity
of the contour of chordal graphs. Discrete Applied Mathematics, 156:1132–1142, 2008.

[4] J. Cáceres, M. C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, and C. Seara. On
geodetic sets formed by boundary vertices. Discrete Mathematics, 306(2):188–198, 2006.

[5] J. Cáceres, A. Márquez, O. R. Oellermann, and M. L. Puertas. Rebuilding convex sets in
graphs. Discrete Mathematics, 297:26–37, 2005.

[6] G. Chartrand, D. Erwin, G.L. Johns, and P. Zhang. Boundary vertices in graphs. Discrete
Mathematics, 263:25–34, 2003.

[7] V. D. Chepoi and V. P. Soltan. Conditions for invariance of set diameters under d-
convexification in a graph. Cybernetics and Systems Analysis, 19(6):750–756, 1983.

[8] M. C. Dourado, J. G. Gimbel, F. Protti, J. L. Szwarcfiter, and J. Kratochv́ıl. On the
computation of the hull number of a graph. Discrete Mathematics, 309:5668–5674, 2009.

[9] M. Farber and R. E. Jamison. Convexity in graphs and hypergraphs. SIAM J. Algebraic
Discrete Methods, 7:433–444, 1986.

[10] F. Harary and J. Nieminen. Convexity in graphs. Journal of Differential Geometry,
16:185–190, 1981.

[11] M. J. L. Van de Vel. Theory of Convex Structures. North-Holland, Amsterdam, 1993.

18

An IP based heuristic algorithm for the
Vehicle and Crew Scheduling Pick-up and
Delivery Problem with Time Windows

D. Bakarcic1, G. Di Piazza1, I. Méndez-Dı́az1, and P. Zabala1,2

1Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

1 Introduction

In this paper we address the Vehicle and Crew Scheduling Pick-up and Delivery Problem
with Time Windows (VCSPDPTW herein): a real life problem involving the planning of the
pick-up and delivery of a set of merchandise requests according to certain time restrictions and
based on a set of available vehicles. In addition, the allocation of crews to the vehicles which
perform each task must also be scheduled. The VCSPDPTW combines features present in
three well studied problems: the Vehicle Routing Problem, the Crew Scheduling Problem and
the Pick-up and Delivery Problem with Time Windows[1]. As far as we know, this particular
problem has not been addressed in the literature before.

In the VCSPDPTW, there is a set of merchandise requests P which must be accomplished by
a set of available vehicles V . Each request consists of a transportation task from a pick-up to a
drop-off location, being each of these locations potentially different for each request. There are
also time restrictions associated with both the pick-up and the drop-off of each request. Each
of these events has a time window in which it must be carried out, and a start date indicating
that the event cannot be accomplished before that date. A request delivered past the drop-off
start date carries a penalty which is a function of the delay. Each vehicle can transport every
request in P , but can only do so one at a time. The vehicles can only stop at a specific set of
locations L, either to carry out an event or to make a swap in its crew. At any given time,
each vehicle’s crew is composed of at most two drivers of the set D. Each driver can only
travel between locations using the available vehicles, and the vehicles can only be driven by
drivers in D. In addition, certain work regulations regarding the drivers’ work shifts, such as
the amount of working hours or consecutive working days, must be complied.

The objective is to provide a planning, that is, a set of routes for the vehicles and a schedule
for the crew, over a given time horizon of T days, in order to ensure that all requests are
accomplished at minimum operation costs. These costs are only associated with the vehicle
routes and are composed of the total travel distance, the penalty in the delay of drop-offs, and
a special penalty associated with travelling without a load. The proposed solution involves
stating the problem as an integer programming model in combination with a column generation
approach, in which we generate the columns associated with the vehicle routes. The column
generation subproblem is solved by searching optimal paths in a resource constrained network.

This work was partially supported by UBACYT 20020100100666, PICT 2010-304 and 2011-817

19

2 Model

In the proposed formulation we have five kind of variables, all of which are binary. Let R
be the set of all feasible routes, variables yr indicate if a route r ∈ R is part of the solution.
Variables Xdki indicate if a driver d ∈ D gets on a vehicle in location k ∈ L at moment i ∈M ,
where M denotes the set of all the time moments included in the time horizon. The cardinality
of M equals T × K, where K represents the granularity in which a day is divided (e.g. for
hours, K = 24). Similarly, variables Wdki indicate if a driver d gets off a vehicle in location k
at moment i. The set of variables Ydki indicate if a driver d is resting in location k at moment
i, and the set of variables Zdj specify if a driver d is off duty on day j.

The objective function minimizes the cost of the routes which are part of the solution:

min
∑

r∈R
cryr subject to

1.
∑

r∈RPp
yr = 1 ∀p ∈ P , where RPp is the set of routes which accomplish p

2.
∑

r∈R yr ≤ |V |
3.

∑
r∈RSLk

yr ≤ |V SLk| ∀k ∈ LV I
4. Ydki = Ydk(i−1) −Xdki +Wdki ∀d ∈ D, k ∈ L, 1 ≤ i < K × T
5. Ydk0 = 1−Xdk0 ∀d ∈ D, where k is the initial location of driver d

6.
∑

k∈L(Ydki +Xdki) ≤ 1 ∀d ∈ D, 1 ≤ i < K × T
7.

∑
r∈D1ki

yr + 2
∑

r∈D2ki
yr =

∑
d∈DWdki ∀k ∈ L, 1 ≤ i < K × T

8.
∑

r∈P1ki
yr + 2

∑
r∈P2ki

yr =
∑

d∈DXdki ∀k ∈ L, 0 ≤ i < K × T
9.

∑
k∈L

∑i+K−1
j=i Ydkj ≥ K/2 ∀d ∈ D, 0 ≤ i < K × T − (K − 1)

10.
∑j+6

i=j Zdi ≥ 1 ∀d ∈ D, 0 ≤ j ≤ T − 7

11. KZdj ≤
∑

k∈L
∑K×j+K−1

i=K×j Ydki ∀d ∈ D, 0 ≤ j < T

Constraints (1) establish that all requests are satisfied by exactly one route. Constraint (2)
establishes that the amount of routes must not exceed the number of available vehicles. Con-
straints (3) ensure that for every location where there is initially at least one vehicle (LV I),
the amount of routes which start on that location (RSLk) is less or equal than the amount of
available vehicles on that location (V SLk). Constraints (4), (5) and (6) establish the relation
between the resting and working hours of the drivers.

Let D1ki, D2ki, P1ki, P2ki be the sets of routes that drop or pick one or two drivers respec-
tively in location k at moment i. Constraints (7) and (8) establish that the amount of drivers
who are dropped or picked by a vehicle in a certain location at a given time must match the
amount of drivers who are getting off/on a vehicle in that location at that time. Constraints
(9), (10) and (11) ensure that the drivers’ working regulations are complied.

The proposed model has an exponential number of variables and therefore cannot be for-
mulated explicitly. To address this issue we use the column generation technique to solve the
LP relaxation (usually called master problem), where the generated columns correspond to the
route variables yr whilst the rest of the variables are considered explicitly.

20

3 Column generation approach

The main idea behind our approach is to start with a restricted set of columns, obtaining as
result a restricted master problem, and iteratively add columns with negative reduced costs
until the master problem is solved to optimality or certain stopping criteria is met. The initial
restricted set of columns is provided by a greedy heuristic algorithm that generates a set of
routes which represent a feasible solution. Once the column generation stage is complete, we
solve the resulting model using a Branch & Cut algorithm. It is important to notice that with
this approach we only generate columns on the root node of the decision tree and therefore
the integer solution may not be optimal.

To solve the column generation subproblem, we need to generate a route whose associated
column has a negative reduced cost. In order to do this, we designed the route graph, a network
in which a directed path from source node s to sink node t represents a route, that is, a valid
sequence of actions preformed by a vehicle (pick-up request p, drop a driver at location k,
etc). The validity of a path is enforced by verifying certain constraints regarding the resources
accumulated by it, which are the time and the accomplished requests. These constraints
ensure that a path does not exceed the time horizon, accomplishes each request at most once
and satisfies the time windows restrictions. The constraints regarding the vehicles’ crew are
not verified by resources in the route graph, hence the graph structure must ensure that the
drivers’ limit is not exceeded. Crew swaps are modeled by two set of nodes per location which
represent the arrival and departure of the vehicle and how many drivers get off/on the vehicle
respectively. Edges connecting the arrival with the departure only exist if the resulting crew
has at least one and no more than two drivers. Regarding path costs, the dual costs obtained
from solving the LP relaxation are introduced as part of the edge costs in the route graph. In
this way, the cost of a path between s and t (route) matches the reduced cost of its associated
column, therefore, the subproblem of column generation becomes searching for a path with a
negative cost in the route graph. For this purpose, we use a dynamic programming algorithm,
based on the one proposed in [2], which solves the Resource Constrained Shortest Path Problem
(RCSPP) over the route graph. If the cost of the resulting path is negative, the column can
be added to the formulation. Otherwise, the optimal solution of the LP relaxation has been
reached. When either this happens or the specified time or number of generated columns is
exceeded, the column generation stage is terminated. See [3] for an in-depth description of the
route graph and the subproblem resolution approach.

Since the RCSPP is NP-hard, we developed two versions of the algorithm: an exact version
and an heuristic one. The latter redefines the notion of path dominance of the former by
relaxing some of the conditions. This allows the heuristic to discard a greater number of
paths than the exact algorithm, making it faster. Being that in each iteration of the column
generation process we need a negative reduced cost column, and not necessarily the one with
the minimum cost, we can first run the heuristic and, if that fails, run the exact algorithm.
Additionally, and with the objective of speeding the column generation process, we added
extra constraints to the routes structure, such as limiting the amount of visited locations and
forbidding duplicate visits. This reduces the search space for both algorithms.

To improve the chances of finding an integer solution, we considered adding more than one
column in each iteration. We proposed two alternatives. The first one is to add not only the
minimum but all negative reduced cost columns found. The second one is to generate a set of
columns which complement the already generated ones. A route r complements a set of routes
S by making drivers available on locations and moments in which the routes in S require them.

21

4 Computational experience

We conducted experiments considering two different kind of instances: small sized and big
sized. The size of an instance is given by its number of locations and requests. All instances
were randomly generated using real geographical information. Algorithms were coded in C++
using the optimizer and the default B&C algorithm provided by CPLEX 12.2. The small
instances tests were run on a laptop with an Intel i3 2.13 GHz and 4 GB of RAM whilst the
big instances were run on an Intel i7 3.40 GHz and 16 GB of RAM. Since there are no previous
experiments on the VCSPDPTW, we report the improvement percentage (%Imp.) between the
initial solution, provided by our greedy algorithm, and the resulting solution after the column
generation process and B&C optimization.

The table below shows the results for the small instances using four different configurations
for the column generation algorithm. The selected configurations consider constrained (C) vs.
unconstrained (U) route generation and minimum reduced cost column (MRC) vs. all negative
reduced cost columns (ANRC) aggregation. We also run tests considering the alternative
complementary route generation but the results showed that it did not contribute to improve
the solution so they are not included here.

Inst. #L #P Conf. U-ANRC Conf. C-ANRC Conf. U-MRC Conf. C-MRC
% Imp. % Gap Time % Imp. % Gap Time % Imp. % Gap Time % Imp. % Gap Time

small-1 6 10 0 0 608 35,93 0 173 0 3 ∗ ∗ ∗ 35,93 0 79
small-2 6 6 0 0 623 0 27 ∗ ∗ ∗ 0 0 620 14,66 37 ∗ ∗ ∗
small-3 6 8 0 34 ∗ ∗ ∗ 0 41 ∗ ∗ ∗ 0 0 616 42,26 17 ∗ ∗ ∗
small-4 6 10 0 15 ∗ ∗ ∗ 0 52 ∗ ∗ ∗ 0 18 ∗ ∗ ∗ 0 0 613
small-5 7 12 0 12 ∗ ∗ ∗ 10,37 0 710 0 0 614 53,33 0 587

A cell filled with (∗ ∗ ∗) means that the algorithm could not solve the instance to optimality
within 900 seconds. This time includes both the time used by the column generation process
and the B&C optimization. Based on the results showed in the above table, we can conclude
that constrained route generation brings better results. We cannot draw any conclusion re-
garding the use of ANRC columns. The table below shows the results for the big instances
using four different configurations considering less constrained (LC) vs. more constrained (MC)
column generation and MRC vs. ANRC column aggregation. In these tests, the time limit
was set to 72000 seconds (8 hours for column generation and 4 hours for B&C).

Inst. #L #P Conf. MC-MRC Conf. MC-ANRC Conf. LC-MRC Conf. LC-ANRC
% Imp. % Gap Time % Imp. % Gap Time % Imp. % Gap Time % Imp. % Gap Time

big-1 10 16 0 0 28803 0 0 28803 0 0 28803 1,64 0 29070
big-2 10 16 0 0 28802 0 0 28803 0 45,22 ∗ ∗ ∗ 0 12,11 ∗ ∗ ∗
big-3 10 16 0 0 28805 8,36 0 28806 0 0 28988 0 22,11 ∗ ∗ ∗

We consider that our approach produces promissory computational results. As future re-
search, and aiming to obtain a Branch & Price algorithm, it would be interesting to obtain a
deeper insight on the structure of the problem in order to derive a robust branching rule that
preserves the structure of the pricing subproblem.

References

[1] B. Golden and S. Raghavan and E. Wasil (Editors). The Vehicle Routing Problem: Latest
Advances and New Challenges - Springer, 2010.

[2] Faramroze G. Engineer and George L. Nemhauser and Martin W. P. Savelsbergh. Shortest
Path Based Column Generation on Large Networks with Many Resource Constraints, 2008.

[3] D. Bakarcic and G. Di Piazza. Ruteo de veh́ıculos y asignación de conductores: un enfoque
combinado, 2012.

22

Online Checkpointing with Improved
Worst-Case Guarantees

Karl Bringmann1, Benjamin Doerr1, Adrian Neumann1, and Jakub
Sliacan1

1Max Planck Institute for Informatics, Saarbrücken, Germany

In the online checkpointing problem, the task is to continuously maintain a set of
k checkpoints that allow to rewind an ongoing computation faster than by a full
restart. The only operation allowed is to remove an old checkpoint and to store the
current state instead. Our aim are checkpoint placement strategies that minimize
rewinding cost, i.e., such that at all times T when requested to rewind to some time
t ≤ T the number of computation steps that need to be redone to get to t from a
checkpoint before t is as small as possible. In particular, we want that the closest
checkpoint earlier than t is not further away from t than pk times the ideal distance
T/(k + 1), where pk is a small constant.

Improving over earlier work showing 1 + 1/k ≤ pk ≤ 2, we show that pk can
be chosen less than 2 uniformly for all k. More precisely, we show the uniform
bound pk ≤ 1.7 for all k, and present algorithms with asymptotic performance
pk ≤ 1.59 + o(1) valid for all k and pk ≤ ln(4) + o(1) ≤ 1.39 + o(1) valid for k being
a power of two. For small values of k, we show how to use a linear programming
approach to compute good checkpointing algorithms. This gives performances of
less than 1.53 for k ≤ 10.

One the more theoretical side, we show the first lower bound that is asymptotically
more than one, namely pk ≥ 1.30 − o(1). We also show that optimal algorithms
(yielding the infimum performance) exist for all k.

1 Introduction

Checkpointing means storing intermediate states of a long sequence of computations. This
allows reverting the system into a previous state much faster, since only the computations
from the preceding checkpoint have to be redone. Checkpointing is one of the fundamental
techniques in computer science. Classic results date back to the seventies, e.g. [4] and the
references therein. More recent topics are checkpointing in distributed [3] systems and sensor
networks [5].

Checkpointing usually involves doing a trade-off between the speed-up of reversions to
previous states and the costs incurred by setting checkpoints (time, memory). Much of the
classic literature studies checkpointing with the focus of recovering from immediately detectable
faults. Consequently, only reversions to the most recent checkpoint are needed. On the negative
side, setting checkpoints is expensive, because the whole system state has to be copied to

23

secondary memory. In such a scenario, the central question is how often to set a checkpoint
such that the expected time (under a stochastic failure model) spent on setting checkpoints
and redoing computations from the last checkpoint is minimized.

In this work, we will regard a checkpointing problem, where the cost of setting checkpoints is
small compared to the cost of regular computation and checkpoints can be kept in main memory.
In this scenario, the memory used by stored checkpoints is the bottleneck. Applications of this
type arise for example in data compression [2].

The first to provide a framework independent of a particular application were Ahlroth,
Pottonen and Schumacher [1]. They do not make assumptions on which reversion will be
requested, but simply investigate how checkpoints can be set in an online fashion such that at
all times their distribution is balanced over the computation history.

They assume that the system is able to store up to k checkpoints (plus a free checkpoint at
time 0). At any point in time, a checkpoint may be discarded and replaced by the current state
as new checkpoint, while ignoring the cost of this operation.

Each set of checkpoints, together with the current state and the state at time 0, partitions
the time from the process start to the current time T into k + 1 disjoint intervals. Clearly,
without further problem-specific information, an ideal set of checkpoints would lead to all
these intervals having identical length. Of course, this is not possible due to the restriction
that new checkpoints can only be set on the current time. As performance measure for a
checkpointing algorithm, Ahlroth et al. mainly regard the maximum gap ratio, that is, the
ratio of the longest vs. the shortest interval (ignoring the last interval), maximized over all
current times T . They show that there is a simple algorithm achieving a performance of
two, and that not much improvement is possible for general k. They show a lower bound of
21−1/d(k+1)/2e = 2(1 − o(1)). For small values of k, namely k = 2, 3, 4, and 5, better upper
bounds of approximately 1.414, 1.618, 1.755, and 1.755, respectively, were shown.

In this work, we regard a different, and, as we find, more natural performance measure. Recall
that the cost of reverting to a particular state is basically the cost of redoing the computation
from the preceding checkpoint to the desired point in time. Our aim is then to keep the length
of the longest interval small (at all times). As a performance measure, we compare the length
of the longest interval to the length T/(k + 1) of a (at time T) optimal partition into equal
length intervals. The quality q(A, T) of an algorithm A at time T ≥ tkis calculated as

q(A, T) := (k + 1)¯̀
T /T,

where ¯̀
T denotes the length of the longest interval at time T . The maximum distance perfor-

mance (or simply performance) Perf(A) is then the supremum over the quality over all times
T , i.e.,

Perf(A) := sup
T≥tk

q(A, T).

This performance measure was suggested in [1], where it is remarked that an upper bound of
β for the gap-ratio implies an upper bound of β(1 + 1

k) for the maximum distance performance.
Moreover for all k an upper bound of 2 and a lower bound of 1 + 1

k for the performance is
presented. For small k ≤ 5, stronger upper bounds were shown.

Our work substantially improves both upper and lower bounds. In particular we show that
both are bounded away from 1, respectively 2, by a constant.

24

2 Results

2.1 New Checkpointing Algorithms

We consider a class of algorithms that remove old checkpoints in a periodic pattern, e.g.,
removing checkpoints at odd positions ordered from oldest to newest and starting again from
the beginning once the most recent checkpoint is removed. They place new checkpoints such
that after one period the intervals are a scaled copy of the initial intervals. We call such
algorithms cyclic. Cyclic algorithms are particularly easy to analyze, as their performance
can be found by looking at just a single period. We establish the first upper bounds that are
asymptotically bounded away from 2 by a constant, as well as improved upper bounds for select
values of k.

For any fixed k, we show how to find good cyclic algorithms by solving a series of linear
feasibility problems. For a fixed pattern P of length n of checkpoint removals and a given
scaling factor, we can set up a system of inequalities for the k+n time points when a checkpoint
is placed that is satisfiable if positions exist that yield a performance of at most λ when
checkpoints are removed according to P . Binary search over λ together with a linear search for
the scaling factor yields a good algorithm for P . For k < 8 we can exhaustively try all patterns
up to length k. By searching for good patterns via randomized local search we can find good
algorithms even for larger k. In experiments we find upper bounds of 1.53 and 1.54 for k = 3,
respectively k = 4 as well as bounds of at most 1.49 for k ∈ [5, 59].

For large k we construct a simple algorithm Linear with a performance of 1.59 +O(k−1).
It places its checkpoints at times ti = (i/k)α. In the analysis we optimize over α and choose
α = 1.302. In one period, Linear removes all checkpoints at odd positions, starting with the
oldest. We analyze the performance by bounding the size of the intervals created by deleting
an old checkpoint and storing a new one. It turns out that the former are always larger than
the latter. Their scaled size can be bounded as

(k + 1)
t2(i−k) − t2(i−k)−2

ti
= (k + 1)

(2(i− k))α − (2(i− k)− 2)α

iα

≤ (k + 1)2α
α(i− k)α−1

iα
,

where we used again (x+ 1)c − xc ≤ c(x+ 1)c. An easy computation shows that (i− k)α−1/iα

is maximized at i = αk over k < i ≤ 2k. Hence, we can upper bound this quality by

≤
(

1 +
1

k

)
2α
α(α− 1)α−1

αα
= 2α

(
1− 1

α

)α−1
+O(k−1).

For α = 1.302 this is 1.586 +O(k−1).
For k being a power of two we show an even better upper bound. We give an algorithm

Binary with performance,

Perf(Binary) = ln(4) +
0.05

lg(k/4)
+O(k−1) ≈ 1.39.

Unlike Linear, that places its checkpoints on a polynomial, Binary places checkpoints on lg k
exponential curves. Again all checkpoints at odd positions are removed within one period, but
the order is more involved. Recursively, checkpoints from the right half of the interval [t1, tk]
are removed twice as often as those from the right half of the interval [t1, tk/2].

25

Experimentally we verify that both Linear and Binary yield very good performance already
for moderate values of k. Combining experimental and asymptotic bounds, we can give a
uniform upper bound of 1.7 for all k.

2.2 Lower Bound

We also present the first lower bound that is larger than 1 be constant, namely we prove

Perf(A) ≥ 1.3−O(k−1),

for any checkpointing algorithm A. This bound leaves room for only 6% improvement over the
algorithm Binary. Our proof works by assuming that A can reshuffle new checkpoints at will,
and only the intervals created by deleting old checkpoints are fixed. We bound p := Perf(A)
by analyzing A over the first k/(2p) steps. We bound the size of intervals created by deletion,
intervals created by insertion and intervals that remain untouched throughout. These bounds
allow us to set up inequalities for p to obtain p ≥ 1.3−O(k−1).

2.3 Existence of Optimal Algorithms

On the more theoretical side, we establish the seemingly simple result that algorithms Optk
exist such that

Perf(Optk) = inf
A

Perf(A),

where A runs over all algorithms that use k checkpoints. Hence, the infimum can be replaced
by a minimum. Surprisingly, this is trivial not at all.

Our proof works by showing that initial positions with optimal quality exist and then
combining a sequence of algorithms that each do a small number of quality preserving steps.

References

[1] L. Ahlroth, O. Pottonen, and A. Schumacher. Approximately uniform online checkpointing
with bounded memory. Algorithmica, to appear.

[2] M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. Online algorithms for locating
checkpoints. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 359–368. ACM, 1990.

[3] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34:375–408, 2002.

[4] E. Gelenbe. On the optimum checkpoint interval. J. ACM, 26:259–270, 1979.

[5] F. Österlind, A. Dunkels, T. Voigt, N. Tsiftes, J. Eriksson, and N. Finne. Sensornet
checkpointing: Enabling repeatability in testbeds and realism in simulations. In U. Roedig
and C. J. Sreenan, editors, Wireless Sensor Networks, volume 5432 of Lecture Notes in
Computer Science, pages 343–357. Springer, 2009.

26

Smoothed Analysis of the Successive
Shortest Path Algorithm∗

Tobias Brunsch1, Kamiel Cornelissen2, Bodo Manthey2, and Heiko
Röglin1

1University of Bonn, Department of Computer Science, Germany.
2University of Twente, Department of Applied Mathematics, Enschede, The Netherlands.

The minimum-cost flow problem is a classic problem in combinatorial opti-
mization with various applications. Several pseudo-polynomial, polynomial, and
strongly polynomial algorithms have been developed in the past decades, and it
seems that both the problem and the algorithms are well understood. However,
some of the algorithms’ running times observed in empirical studies contrast the
running times obtained by worst-case analysis not only in the order of magnitude
but also in the ranking when compared to each other. For example, the Succes-
sive Shortest Path (SSP) algorithm, which has an exponential worst-case running
time, seems to outperform the strongly polynomial Minimum-Mean Cycle Cancel-
ing algorithm. To explain this discrepancy, we study the SSP algorithm in the
framework of smoothed analysis and establish a bound of O(mnφ(m + n log n))
for its smoothed running time. This shows that worst-case instances for the SSP
algorithm are not robust and unlikely to be encountered in practice.

1 Introduction

Flow problems have gained a lot of attention in the second half of the twentieth century
to model, for example, transportation and communication networks [1]. Plenty of pseudo-
polynomial, polynomial, and strongly polynomial algorithms have been developed for the
minimum-cost flow problem over the last fifty years. The fastest known strongly polyno-
mial algorithm up to now is the Enhanced Capacity Scaling algorithm due to Orlin [10] and it
has a running time of O(m log(n)(m + n log n)). For an extensive overview of minimum-cost
flow algorithms we suggest the book of Ahuja, Magnanti, and Orlin [1].

Zadeh [14] showed that the Successive Shortest Path (SSP) algorithm has an exponential
worst-case running time. Contrary to this, the worst-case running time of the strongly polyno-
mial Minimum-Mean Cycle Canceling (MMCC) algorithm is O(m2n2 min{log(nC),m}) [11].
Here, C denotes the maximum edge cost. However, the notions of pseudo-polynomial, poly-
nomial, and strongly polynomial algorithms always refer to worst-case running times, which
do not always resemble the algorithms’ behavior on real-life instances. Algorithms with large

∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and NWO grant 613.001.023.
It was presented at SODA 2013.

27

worst-case running times do not inevitably perform poorly in practice. An experimental study
of Király and Kovács [7] indeed observes running time behaviors significantly deviating from
what the worst-case running times indicate. The MMCC algorithm is completely outperformed
by the SSP algorithm. In this paper, we explain why the SSP algorithm comes off so well by
applying the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [12] to explain why the simplex
method is efficient in practice despite its exponential worst-case running time. In the original
model, an adversary chooses an arbitrary instance which is subsequently slightly perturbed at
random. In this way, pathological instances no longer dominate the analysis. Good smoothed
bounds usually indicate good behavior in practice because in practice inputs are often subject to
a small amount of random noise. For instance, this random noise can stem from measurement
errors, numerical imprecision, or rounding errors. It can also model influences that cannot be
quantified exactly but for which there is no reason to believe that they are adversarial. Since
its invention, smoothed analysis has been successfully applied in a variety of contexts. We
refer to [9] for a recent survey.

We follow a more general model of smoothed analysis due to Beier and Vöcking [2]. In
this model, the adversary is even allowed to specify the probability distribution of the random
noise. The power of the adversary is only limited by the smoothing parameter φ. In particular,
in our input model the adversary does not fix the edge costs ce ∈ [0, 1] for each edge e, but
he specifies probability density functions fe : [0, 1]→ [0, φ] according to which the costs ce are
randomly drawn independently of each other. If φ = 1, then the adversary has no choice but
to specify a uniform distribution on the interval [0, 1] for each edge cost. In this case, our
analysis becomes an average-case analysis. On the other hand, if φ becomes large, then the
analysis approaches a worst-case analysis since the adversary can specify small intervals Ie of
length 1/φ (that contain the worst-case costs) for each edge e from which the costs ce are
drawn uniformly.

As in the worst-case analysis, the network graph G = (V,E), the edge capacities u(e) ∈ R+,
and the balance values b(v) ∈ R of the nodes – indicating how much of a resource a node
requires (b(v) < 0) or offers (b(v) > 0) – are chosen adversarially. We define the smoothed
running time of an algorithm as the worst expected running time the adversary can achieve
and we prove the following theorem.

Theorem 1. The smoothed running time of the SSP algorithm is O(mnφ(m+ n log n)).

If φ is a constant – which seems to be a reasonable assumption if it models, for example,
measurement errors – then the smoothed bound simplifies to O(mn(m+n log n)). Hence, it is
unlikely to encounter instances on which the SSP algorithm requires an exponential amount of
time. Still, this bound is worse than the bound O(m log(n)(m+ n log n)) of Orlin’s Enhanced
Capacity Scaling algorithm, but this coincides with practical observations.

In practice, an instance of the minimum-cost flow problem is usually first transformed to an
equivalent instance with only one source (a node with positive balance value) s and one sink
(a node with negative balance value) t. The SSP algorithm then starts with the empty flow
f0. In each iteration i, it computes the shortest path Pi from the source s to the sink t in
the residual network and maximally augments the flow along Pi to obtain a new flow fi. The
algorithm terminates when no s− t path is present in the residual network.

Theorem 2. In any round i, flow fi is a minimum-cost bi-flow for the balance function bi
defined by bi(s) = −bi(t) = |fi| and bi(v) = 0 for v /∈ {s, t}.

28

Theorem 2 is due to Jewell [6], Iri [5], and Busacker and Gowen [4]. As a consequence, no
residual network Gfi contains a directed cycle with negative total costs. Otherwise, we could
augment along such a cycle to obtain a bi-flow f ′ with smaller costs than fi.

2 Terminology and Notation

Consider the run of the SSP algorithm on the flow network G. We denote the set {f0, f1, . . .}
of all flows encountered by the SSP algorithm by F0(G). Furthermore, we set F(G) = F0(G)\
{f0}. (We omit the parameter G if it is clear from the context.)

By f0, we denote the empty flow, i.e., the flow that assigns 0 to all edges e. Let fi−1 and fi
be two consecutive flows encountered by the SSP algorithm and let Pi be the shortest path in
the residual network Gfi−1

, i.e., the SSP algorithm augments along Pi to increase flow fi−1 to
obtain flow fi. We call Pi the next path of fi−1 and the previous path of fi. To distinguish
between the original network G and some residual network Gf in the remainder of this paper,
we refer to the edges in the residual network as arcs, whereas we refer to the edges in the
original network as edges.

For a given arc e in a residual network Gf , we denote by e0 the corresponding edge in the
original network G, i.e., e0 = e if e ∈ E (i.e. e is a forward arc) and e0 = e−1 if e /∈ E (i.e. e
is a backward arc). An arc e is called empty (with respect to some residual network Gf) if e
belongs to Gf , but e−1 does not. Empty arcs e are either forward arcs that do not carry flow
or backward arcs whose corresponding edge e0 carries as much flow as possible.

3 Outline of Our Approach

Our analysis of the SSP algorithm is based on the following idea: We identify a flow fi ∈ F0

with a real number by mapping fi to the length `i of the previous path Pi of fi. The flow f0 is
identified with `0 = 0. In this way, we obtain a sequence L = (`0, `1, . . .) of real numbers. We
show that this sequence is strictly monotonically increasing with a probability of 1. Since all
costs are drawn from the interval [0, 1], each element of L is from the interval [0, n]. To count
the number of elements of L, we partition the interval [0, n] into small subintervals of length ε
and sum up the number of elements of L in these intervals. By linearity of expectation, this
approach carries over to the expected number of elements of L. If ε is very small, then – with
sufficiently high probability – each interval contains at most one element. Thus, it suffices to
bound the probability that an element of L falls into some interval (d, d+ ε].

For this, assume that there is an integer i such that `i ∈ (d, d + ε]. By the previous
assumption that for any interval of length ε there is at most one path whose length is within
this interval, we obtain that `i−1 ≤ d. We show that the augmenting path Pi uses an empty
arc e. Moreover, we will see that we can reconstruct flow fi−1 without knowing the cost of
edge e0 that corresponds to arc e in the original network. Hence, we do not have to reveal ce0
for this. However, the length of Pi, which equals `i, depends linearly on ce0 , and the coefficient
is +1 or −1. Consequently, the probability that `i falls into the interval (d, d+ ε] is bounded
by εφ, as the probability density of ce0 is bounded by φ. Since the arc e is not always the same,
we have to apply a union bound over all 2m possible arcs. Summing up over all n/ε intervals
the expected number of flows encountered by the SSP algorithm can be bounded by roughly
(n/ε) · 2m · εφ = 2mnφ.

29

There are some parallels to the analysis of the smoothed number of Pareto-optimal solutions
in bicriteria linear optimization problems by Beier and Vöcking [3], although we have only
one objective function. In this context, we would call fi the loser, fi−1 the winner, and the
difference `i − d the loser gap. Beier and Vöcking’s analysis is also based on the observation
that the winner (which in their analysis is a Pareto-optimal solution and not a flow) can be re-
constructed when all except for one random coefficients are revealed. While this reconstruction
is simple in the setting of bicriteria optimization problems, the reconstruction of the flow fi−1
in our setting is significantly more challenging and a main difficulty in our analysis.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows – theory,
algorithms and applications. Prentice Hall, 1993.

[2] René Beier and Berthold Vöcking. Random knapsack in expected polynomial time. Jour-
nal of Computer and System Sciences, 69(3):306–329, 2004.

[3] René Beier and Berthold Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[4] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family of miminum-
cost network flow patterns. Technical Paper 15, Operations Research Office, Johns Hop-
kins University, 1960.

[5] Masao Iri. A new method for solving transportation-network problems. Journal of the
Operations Research Society of Japan, 3(1,2):27–87, 1960.

[6] William S. Jewell. Optimal flow through networks. Oper. Res., 10(4):476–499, 1962.

[7] Zoltán Király and Péter Kovács. Efficient implementations of minimum-cost flow algo-
rithms. Acta Universitatis Sapientiae, Informatica, 4(1):67–118, 2012.

[8] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 4th edition, 2007.

[9] Bodo Manthey and Heiko Röglin. Smoothed analysis: analysis of algorithms beyond worst
case. it – Information Technology, 53(6):280-286, 2011.

[10] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper. Res.,
41(2):338–350, 1993.

[11] Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-mean
cycle cancellations and related results. Algorithmica, 11(3):226–242, 1994.

[12] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

[13] Roman Vershynin. Beyond hirsch conjecture: Walks on random polytopes and smoothed
complexity of the simplex method. SIAM Journal on Computing, 39(2):646–678, 2009.

[14] Norman Zadeh. A bad network problem for the simplex method and other minimum cost
flow algorithms. Mathematical Programming, 5(1):255–266, 1973.

30

The Spanning Tree Problem with
One Quadratic Term

Christoph Buchheim1 and Laura Klein1

1Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany,
{christoph.buchheim,laura.klein}@tu-dortmund.de

1 Introduction

A common approach to quadratic optimization over binary variables is to linearize the qua-
dratic terms and to develop an appropriate polyhedral description of the corresponding set of
feasible solutions. A straightforward idea is to linearize each product in the objective function
independently and simply combine the result with the given linear side constraints. This
approach yields a correct integer programming model of the problem, but the resulting LP-
relaxations lead to very weak bounds in general, so that branch-and-cut algorithms based on
this simple linearization idea perform very poorly in general. For this reason, one usually
searches for stronger or even facet defining inequalities to tighten the description; see, e.g., [2].

In this paper, we consider another approach that, to the best of our knowledge, has not been
investigated yet: we examine the problem version with only one product term in the objective
function, but with all linear side constraints taken into account. Any valid cutting plane
for this problem will remain valid for the original problem as well and potentially improves
over the straightforward model, since the chosen product is considered together with all side
constraints. The advantage of our approach lies in the fact that there exists a polynomial time
separation algorithm for the one-product problem whenever the underlying linear problem is
tractable: in this case, the corresponding optimization problem is polynomially solvable by
solving the underlying linear problem four times, with different fixings of the two variables
appearing in the chosen product.

From a practical point of view, this indirect separation approach does not pay off within a
branch-and-cut algorithm; the effort for computing a single cutting plane is too high. There-
fore, we apply this idea to an important specific problem in the following, namely the quadratic
minimum spanning tree (QMST) problem. The linear spanning tree problem is well studied
and solvable in polynomial time, while additional costs for pairs of edges render the problem
NP-hard [1]. We introduce two new classes of facet defining inequalities for QMST with only
one quadratic term in the objective function. These inequalities arise from certain subtour
elimination constraints by adding the new product variable to the left hand side. We actually
conjecture that the addition of these classes of inequalities suffices to obtain a complete poly-
hedral description of the linearized polytope in the one-product case. The new inequalities can
be separated in polynomial time by adapting the separation routines for subtour elimination
constraints. Our experimental results show a significant improvement of both bounds and
running times when adding the new inequalities to a branch-and-cut algorithm for solving the
original problem with all quadratic terms, with respect to the straightforward linearization.

31

2 Preliminaries

We assume that G = (V,E) is a complete undirected graph. The quadratic minimum spanning
tree problem can be formulated as an integer program with linear constraints and a quadratic
objective function:

(QIPQMST) min
∑

e∈E
cexe +

∑

e,f∈E, e 6=f

cefxexf (1)

s.t.
∑

e∈E
xe = |V | − 1 (2)

∑

e∈E(G[S])

xe ≤ |S| − 1 ∀ ∅ 6= S (V (3)

xe ∈ {0, 1} ∀ e ∈ E.

Here G[S] denotes the subgraph of G induced by the vertices in S and E(G[S]) denotes its edge
set. The subtour elimination constraints (3) ensure that no subgraph induced by S contains a
cycle; combined with Equation (2), this also guarantees connectivity.

To get rid of the quadratic terms in the objective function, we linearize all products xexf
by introducing artificial binary variables yef and link them to the original variables using the
following additional linear inequalities:

yef ≤ xe, xf ∀ e, f ∈ E (4)

yef ≥ xe + xf − 1 ∀ e, f ∈ E. (5)

The x-entries of all feasible solutions of the linearized problem (QIPQMST) model exactly the
incidence vectors of all spanning trees, and due to the binary constraints, the value of every yef
is exactly the product of xe and xf by (4) and (5). The latter does not remain true, however,
after relaxing integrality.

When considering a quadratic objective function with a single product term, we have to
distinguish between two cases. In the first case, the product term consists of variables of two
adjacent edges. We denote these edges by e1 := {u, v} and e2 := {v, w} and the product
of their variables is called a connected monomial. The corresponding problem is denoted by
QMSTc in the following. In the second case, the edges of the product variables are non-
adjacent in the graph, therefore, the edges are e1 := {u, v} and e2 := {w, z} with pairwise
distinct vertices u, v, w, z ∈ V . We refer to a disconnected monomial and denote the problem
by QMSTd. As the context leads to the correct association, we shortly denote the linearization
variables y{u,v}{v,w} and y{u,v}{w,z} by y.

Our aim is thus to investigate the polytope corresponding to QMSTc, defined as

P c := conv

{(
x

y

)
∈ {0, 1}|E|+1

∣∣∣∣ x satisfies (2) to (3) and y = x{u,v}x{v,w}

}

and the polytope corresponding to QMSTd, defined as

P d := conv

{(
x

y

)
∈ {0, 1}|E|+1

∣∣∣∣ x satisfies (2) to (3) and y = x{u,v}x{w,z}

}
.

32

3 Polyhedral Results

In the following we assume |V | ≥ 4. The dimension of the (linear) spanning tree polytope P lin

is |E| − 1. Clearly, the additional linearization variable y increases the dimension by at most
one. In fact, we have

Theorem 3.1.
dim(P c) = dim(P d) = dim(P lin) + 1 = |E|.

The following results introduce two classes of facet defining inequalities for the polytopes P c

and P d, respectively. They strengthen the subtour elimination constraints (3); we call them
quadratic subtour elimination constraints in the following.

Theorem 3.2. Let S ⊂ V be a set of vertices with u,w ∈ S and v /∈ S. Then the inequality

∑

e∈E(G[S])

xe + y ≤ |S| − 1 (6)

induces a facet of P c.

Theorem 3.3. Let S1, S2 ⊂ V be disjoint subsets of vertices such that both edges {u, v} and
{w, z} have exactly one end node in S1 and one end node in S2. Then the inequality

∑

e∈E(G[S1])

xe +
∑

e∈E(G[S2])

xe + y ≤ |S1|+ |S2| − 2 (7)

induces a facet of P d.

In fact, we conjecture that the classes of facets described in Theorems 3.2 and 3.3 yield a
complete polyhedral description of P c and P d, respectively.

Conjecture 3.4.

P c =

{(
x

y

)
∈ [0, 1]|E|+1

∣∣∣∣
(
x

y

)
satisfies (2), (3), (4), (5), and (6)

}

P d =

{(
x

y

)
∈ [0, 1]|E|+1

∣∣∣∣
(
x

y

)
satisfies (2), (3), (4), (5), and (7)

}
.

All three classes of subtour elimination constraints (3), (6) and (7) are of exponential size,
so that these inequalities cannot be separated by enumeration. Therefore, a polynomial time
separation routine is required. For (3), a well-known separation algorithm is based on a minimal
cut algorithm. Using an appropriate adaption of this algorithm, we can show the following
result:

Theorem 3.5. The separation problems for the classes of inequalities (6) and (7) are polyno-
mial time solvable.

The problems can be reduced to solving one maximum s-t-flow problem for (6) and eight
such problems for (7), corresponding to different fixings.

33

4 Experimental Results

Our aim is to determine the impact of the new inequalities for instances with more or
all quadratic terms in the objective function. We implemented the separation algorithm of
Theorem 3.5 and embedded it into the branch-and-cut software SCIL [4]. We considered the
basic problem formulation using Constraints (2) to (5) where the subtour elimination con-
straints were separated dynamically and no further reformulation was applied (stdlin). For
comparison we additionally separated the quadratic subtour elimination constraints (6) or (7)
for each of the appearing products (+qsec). We tested graphs with edge densities of 33 %, 67 %
and 100 %. The absolute weights are chosen randomly between 1 and 10, similar to the in-
stances used in [3].

We discovered that, in the case of positive product weights, the separation of quadratic
subtour elimination constraints does not improve the bounds at all, so we consider the case of
negative product weights in the following. The separation for both connected and disconnected
monomials leads to slightly longer running times but has a positive influence on the bounds
and numbers of subproblems. In terms of running times the best approach turns out to be the
separation for only connected monomials even if other monomials exist.

Actually, in most applications, the objective function contains only connected monomials. In
this case using quadratic subtour elimination constraints (6) leads to significant improvements
over stdlin, see the table below. Each line corresponds to the average of four tested instances.

edges nodes sep # subs # LPs cputime septime rootgap

10

33 %
stdlin 5.00 8.50 0.01 0.00 1.63 %
+qsec 1.00 3.25 0.00 0.00 0.00 %

67 %
stdlin 38.50 45.50 0.14 0.00 23.65 %
+qsec 27.50 32.75 0.21 0.05 21.91 %

100 %
stdlin 3869.00 3635.25 36.39 0.42 72.31 %
+qsec 1694.50 1788.25 24.91 3.42 71.46 %

15
33 %

stdlin 1434.00 1260.00 3.04 0.24 42.58 %
+qsec 393.00 452.75 2.13 0.49 33.67 %

67 %
stdlin 790.00 689.50 17.70 0.23 26.11 %
+qsec 329.50 332.00 12.02 2.39 24.20 %

One can see that the separation time (septime) increases slightly but the bounds are improved
significantly, leading to better root gaps (rootgap) and numbers of subproblems (# subs). Al-
together, the running times (cputime) decrease considerably, showing the potential of our
approach of considering only single product terms.

References

[1] A. Assad and W. Xu. The quadratic minimum spanning tree problem. Naval Research
Logistics (NRL), 39(3):399–417, 1992.

[2] C. Buchheim, F. Liers, and M. Oswald. Speeding up IP-based algorithms for constrained
quadratic 0–1 optimization. Mathematical Programming B, 124(1–2):513–535, 2010.

[3] R. Cordone and G. Passeri. Solving the quadratic minimum spanning tree problem. Applied
Mathematics and Computation, 218(23):11597–11612, 2012.

[4] SCIL – Symbolic Constraints in Integer Linear programming. scil-opt.net.

34

Robust Optimization
Under Multiband Uncertainty

Christina Büsing1, Fabio D’Andreagiovanni2,3, and Annie Raymond2

1Chair of Operations Research, RWTH Aachen University, Kackertstrasse 7, 52072 Aachen, Germany,
buesing@or.rwth-aachen.de

2Department of Optimization, Zuse-Institut Berlin (ZIB), Takustrasse 7, 14195 Berlin, Germany,
{d.andreagiovanni, raymond}@zib.de

3Department of Computer, Control and Management Engineering, Sapienza Università di Roma, via
Ariosto 25, 00185 Roma, Italy

We provide an overview of the main results that we obtained studying uncertain
mixed integer linear programs when the uncertainty is represented through the new
multiband model [4]. Such model extends and refines the classical one proposed by
Bertsimas and Sim [2] and is particularly suitable in the common case of arbitrary
non-symmetric distributions of the uncertainty. Our investigations were inspired
by the practical needs of our industrial partners in the German research project
ROBUKOM [8].

1 Introduction

A central assumption in classical optimization is that all coefficients of the considered problem
are known exactly. However, many real-world problems involve uncertain data and neglecting
these uncertainties may have dramatic effects: optimal solutions may reveal to be of very bad
quality and solutions supposed to be feasible may turn out to be infeasible.

Over the past few years, Robust Optimization (RO) has increasingly gained attention as
a valid methodology to tackle uncertainties affecting optimization problems. The key feature
of RO is to take into account uncertainty as hard constraints which restrict the feasible set,
thus maintaining only robust solutions, i.e. solutions protected from data deviations. For an
exhaustive introduction to the theory and applications of RO, we refer the reader to the recent
survey by Bertsimas et al. [1].

In this work, we focus on multiband uncertainty, a new approach to model uncertainty
that refines and generalizes the widely known Γ-scenario set (BS) of Bertsimas and Sim [2].
The uncertainty model BS assumes that, for each coefficient a of the problem, we know the
nominal value a as well as the maximum deviation d and that the actual value of a lies in
the symmetric interval [a− d, a + d]. Moreover, a parameter Γ is introduced to represent the
maximum number of coefficients that deviate from their nominal value. This parameter also
controls the conservativeness of the robust model. A central result of BS is that the robust
counterpart of an LP can be formulated as a compact linear problem. However, the use of a
single deviation band may greatly limit the power of modeling uncertainty, as noted even by

35

Sim and his colleagues in [7]. This is particularly evident in real-world problems, where it is
common to have asymmetric probability distributions for the deviations, that are additionally
defined over asymmetric intervals. In such cases, neglecting the inner-band behavior and just
considering the extreme values like in BS leads to a rough estimate of the deviations and
produce over-conservative robust solutions. Having a higher modeling resolution is therefore
highly desirable. This can be accomplished by a simple operation: breaking the single band of
BS into multiple narrower bands, each with its own Γ value, as we do in multiband uncertainty.

The idea of using multiple bands was originally proposed for portfolio optimization [3], but
this applied-oriented study was (surprisingly) not followed by a theoretical study. Our main
objective has thus been to close the knowledge gap about the use of multiband uncertainty in
RO.

For a comprehensive presentation of our results we refer the reader to [4, 5, 6]. In [4] we have
presented two of the fundamental results of the study, namely: 1) the robust counterpart of a
mixed integer linear program can be formulated as a compact mixed integer linear program; 2)
the separation of robustness cuts can be done by solving a min-cost flow problem. A refinement
of the results is presented in [5] and finally in [6] the study was extended by investigating
special properties of uncertain binary programs as well as the probability bounds of constraint
violation.

We note that our results are not obtained by simply extending the proofs of [2] for single-band
uncertainty, but required alternative proof strategies.

2 Multiband uncertainty in Robust Optimization

We study the robust counterpart of the following Mixed-Integer Linear Program (MILP):

max
∑

j∈J
cj xj s.t.

∑

j∈J
aij xj ≤ bi , i ∈ I = {1, . . . ,m}, (1)

xj ≥ 0 , j ∈ J = {1, . . . , n}, xj ∈ Z+, j ∈ JZ ⊆ J . (2)

We assume that the value of each coefficient aij is uncertain and that the uncertainty is modeled
through what we call a multiband uncertainty set SM . Specifically, we assume that, for each
coefficient aij , we are given its nominal value aij and maximum negative and positive deviations

dK
−

ij , dK
+

ij from aij , such that the actual value aij lies in the interval [āij + dK
−

ij , āij + dK
+

ij].
Moreover, we derive a generalization of the Bertsimas-Sim model by partitioning the single
deviation band [dK−ij , dK+

ij] of each coefficient aij into K bands, defined on the basis of K

deviation values: −∞ < dK
−

ij < · · · < d−2ij < d−1ij < d0ij = 0 < d1ij < d2ij < · · · < dK
+

ij < +∞.
Through these deviation values, we define: 1) a set of positive deviation bands, such that

each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1ij , dkij]; 2) a set of negative deviation

bands, such that each band k ∈ {K− + 1, . . . ,−1, 0} corresponds to the range (dk−1ij , dkij] and

band k = K− corresponds to the single value dK
−

ij (the interval of each band but k = K− is
thus open on the left). With a slight abuse of notation, we denote a generic deviation band
by the index k, with k ∈ K = {K−, . . . ,−1, 0, 1, . . . ,K+} and the corresponding range by
(dk−1ij , dkij].

Additionally, for each band k ∈ K, we define a lower bound lk and an upper bound uk on
the number of deviations that may fall in k, with lk, uk ∈ Z satisfying 0 ≤ lk ≤ uk ≤ n. In the
case of band k = 0, we assume that u0 = n, i.e. we do not limit the number of coefficients that

36

take their nominal value. We also assume that
∑

k∈K lk ≤ n, so that there exists a feasible
realization of the coefficient matrix.

Consider a feasible solution x and a constraint i of MILP and denote by DEVi(x,SM) the
maximum overall deviation allowed by the multiband uncertainty set SM , then the robust
counterpart of MILP can be defined by adding DEVi(x,SM) to each constraint i ∈ I, namely∑

j∈J aij xj + DEVi(x,SM) ≤ bi. Since DEVi(x,SM) corresponds to a binary maximization
program (see [4] for details), the resulting robust counterpart is actually a (non-linear) max-
max problem. However, we prove that this problem can be reformulated as a compact and
linear problem. For lack of space in the present extended abstract, we state only informally
the main results of our investigations. We refer the reader to [4, 5, 6] for the formal complete
statements and proofs of the presented theorems.

Theorem 2.1. The robust counterpart of MILP under the multiband uncertainty set is equiva-
lent to a compact mixed integer linear program, which includes K ·m+n ·m additional variables
and K · n ·m additional constraints.

As an alternative to the direct solution of the compact and linear robust counterpart, we
have also investigated the possibility of adopting a cutting-plane approach. Given a solution
to MILP, we want to test if the solution is robust feasible. If not, we separate a cut that
imposes robustness (robustness cut), we add it to the problem and we solve again the problem
including the new cut. This basic step can be iterated as in a typical cutting-plane method
until a robust feasible solution is found. In the case of the Bertsimas-Sim model, the problem
of separating a robustness cut for a given constraint is very simple and essentially consists in
sorting the deviations in increasing order and choose the worst Γ > 0. In the case of multiband
uncertainty, this simple approach does not guarantee the robustness of a computed solution.
However, we prove the following result:

Theorem 2.2. The separation of a robustness cut for a constraint of MILP can be done in
polynomial time by solving a min-cost flow problem.

We refer again the reader to [4, 5, 6] for the formal statement and the detailed description of
how we build the min-cost flow instance and structure the corresponding proof.

2.1 Binary Programs with cost uncertainty

In the case of pure binary programs where the uncertainty only affects the objective function,
the results presented above can be refined. To this end, consider the following Binary Program:

min
∑

j∈J
cj xj (BP)

x ∈ X ⊆ {0, 1}n ,

with non-negative cost vector, i.e. cj ≥ 0, for all j ∈ J = {1, . . . , n}. Relevant problems such
as the minimum spanning tree problem, the maximum weighted matching problem and the
shortest path problem belong to this class of problems.

We have studied the robust version of the previous problem when only the cost coefficients
are uncertain and uncertainty is modeled through a multiband set. More formally, for each
element j ∈ J , we are given the nominal cost c̄j and a sequence of K+ + 1 deviation values dkj ,

with k ∈ K = {0, . . . ,K+}, such that 0 = d0j < d1j < . . . < dK+
j <∞ (note that in contrast to

37

the previous section here w.l.o.g. we consider only positive deviations). Through these values,
we define: 1) the zero-deviation band corresponding to the single value d0j = 0; 2) a set K+ of

positive deviation bands, such that each band k ∈ K\{0} corresponds to the range (dk−1j , dkj].
Furthermore, integer values lk, uk ∈ Z, with 0 ≤ lk ≤ uk ≤ n, represent the lower and upper
bounds on the number of deviations falling in each band k ∈ K.

Since BP is a special case of MILP, we can solve it by referring to its compact robust
counterpart or by adopting a cutting-plane algorithm based on the separation of robustness
cuts, as shown above. However, as an alternative to these two approaches, we have proved the
following result:

Theorem 2.3. The robust optimal solution of BP with cost uncertainty modeled through a
multiband set can be computed by solving a polynomial number of nominal problems BP with
modified objective function, if the number of bands is constant. Tractability and approximability
of BP are maintained.

We refer the reader to [6] for the formal statement of the result. Our study has been completed
by computational experiments on realistic network instances, defined in collaboration with our
industrial partners in past and ongoing research projects. In particular, the experiments have
highlighted a reduction in the price of robustness, thanks to the refined representation of the
uncertainty obtained through the multiband model.

References

[1] Bertsimas, D., Brown, D., Caramanis, C.: Theory and Applications of Robust Optimiza-
tion. SIAM Review 53 (3), 464–501 (2011)

[2] Bertsimas, D., Sim, M.: The Price of Robustness. Oper. Res., 52 (1), 35–53 (2004)

[3] Bienstock, D.: Histogram models for robust portfolio optimization. J. Computational Fi-
nance, 11, 1–64 (2007)

[4] Büsing, C., D’Andreagiovanni, F.: New Results about Multiband Uncertainty in Robust
Optimization. In: Klasing, R. (ed.) Experimental Algorithms - SEA 2012, LNCS, vol. 7276,
pp. 63-74. Springer, Heidelberg (2012)

[5] Büsing, C., D’Andreagiovanni, F.: New Results about Multiband Uncertainty in Robust
Optimization. CoRR abs/1208.6322, http://arxiv.org/abs/1208.6322 (2012)

[6] Büsing, C., D’Andreagiovanni, F.: Robust Optimization under Multiband Uncertainty -
Part I: Theory. Submitted for publication (2012) (preprint: Optimization Online 13-01-
3748)

[7] Chen, X., Sim, M., Peng, S.: A Robust Optimization Perspective on Stochastic Program-
ming. Oper. Res. 55 (6), 1058–1071 (2007)

[8] Koster, A.M.C.A., Helmberg, C., Bley, A., Grötschel, M., Bauschert, T.: BMBF Project
ROBUKOM: Robust Communication Networks. In: ITG Workshop Euro View 2012, pp.
1–2, VDE Verlag, Berlin (2012)

38

Connected Dominating Set in Graphs
Without Long Paths And Cycles

Eglantine Camby1 and Oliver Schaudt2

1Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, 1050
Brussels, Belgium,

2Combinatoire et Optimisation, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France,

The ratio of the connected domination number, γc, and the domination number,
γ, is strictly bounded from above by 3. It was shown by Zverovich that for every
connected (P5, C5)-free graph, γc = γ.
We investigate the interdependence of γ and γc in the class of (Pk, Ck)-free graphs,

for k ≥ 6. We prove that for every connected (P6, C6)-free graph, γc ≤ γ + 1
holds, and there is a family of (P6, C6)-free graphs with arbitrarily large values of
γ attaining this bound. Moreover, for every connected (P8, C8)-free graph, γc/γ ≤
2, and there is a family of (P7, C7)-free graphs with arbitrarily large values of
γ attaining this bound. In the class of (P9, C9)-free graphs, the general bound
γc/γ < 3 is asymptotically sharp.

1 Introduction

A full paper version of this extended abstract, including proofs and more details, is available
online at http://www.zaik.uni-koeln.de/∼schaudt/DS-PoC.pdf.

A dominating set of a graph G is a vertex subset X such that every vertex not in X has a
neighbor in X. The minimum size of a dominating set of G is called the domination number
of G and is denoted by γ(G). A dominating set of size γ(G) is called a minimum dominating
set.
Dominating sets have been intensively studied in the literature. The main interest in domi-

nating sets is due to their relevance on both theoretical and practical side. Moreover, there are
interesting variants of domination and many of them are well-studied. A good introduction
into the topic is given by Haynes, Hedetniemi and Slater [7].
A connected dominating set of a graph G is a dominating set X whose induced subgraph,

henceforth denoted G[X], is connected. The minimum size of such a set of a connected graph
G, the connected domination number of G, is denoted by γc(G). A connected dominating set of
size γc(G) is called aminimum connected dominating set. A connected dominating set such that
every proper subset is not a connected dominating set is called minimal connected dominating
set. Among the applications of connected dominating sets is the routing of messages in mobile
ad-hoc networks. Blum, Ding, Thaeler and Cheng [1] explain the usefulness of connected
dominating sets in this context.
A first impression of the relation of γc and γ is given by Duchet and Meyniel [4].

39

Observation 1.1 (Duchet and Meyniel [4]). For every connected graph it holds that γc ≤ 3γ−2.

As an immediate consequence of Observation 1.1,

γc/γ < 3. (1)

Loosely speaking, the price of connectivity for minimum dominating sets, γc/γ, is strictly
bounded by 3.
Let Pk be the induced path on k vertices and let Ck be the induced cycle on k vertices. It

is easy to see that
lim
k→∞

γc(Pk)/γ(Pk) = 3 = lim
k→∞

γc(Ck)/γ(Ck). (2)

Hence, the upper bound (1) is asymptotically sharp in the class of paths and in the class of
cycles.
The price of connectivity has been introduced by Cardinal and Levy [3, 9] for the vertex

cover problem. They showed that it was bounded by 2/(1 + ε) in graphs with average degree
εn, where n is the number of vertices. In a companion paper to the present one, the price
of connectivity for vertex cover is studied by Camby, Cardinal, Fiorini and Schaudt [2]. In a
similar spirit, Schaudt [11] studied the ratio between the connected domination number and
the total domination number. Fulman [5] and Zverovich [13] investigated the ratio between the
independence number and the upper domination number. Many results in this area concern
graph classes defined by forbidden induced subgraphs. This line of research stems from the
classical theory of perfect graphs, for which the clique number and the chromatic number are
equal in every induced subgraph [6].
Motivated by (2), we study the interdependence of γc and γ in graph classes defined by

forbidden induced paths and cycles. For this we use the following standard notation. If G and
H are two graphs, we say that G is H-free if H does not appear as an induced subgraph of
G. Furthermore, if G is H1-free and H2-free for some graphs H1 and H2, we say that G is
(H1, H2)-free. Our starting point is the following result by Zverovich [12].

Theorem 1.2 (Zverovich [12]). The following assertions are equivalent for every graph G.

1. For every connected induced subgraph of G it holds that γc = γ.

2. G is (P5, C5)-free.

We aim for similar bounds in the class of (Pk, Ck)-free connected graphs for k ≥ 6. The
properties of connected dominating sets in Pk-free graphs have been studied before, e.g. by
Liu, Peng and Zhao [10] and later van ’t Hof and Paulusma [8].
Apart from the previous work, this research has an algorithmic motivation. The proofs of our

results are constructive in the sense that it is possible to draw polynomial time algorithms from
them. These algorithms can be used to build, given a dominating set of size k, a connected
dominating set of size at most f(k), for the suitable function f provided by the respective
theorem. We do not explicitely give the algorithms, but leave it as a possible future application
of our results.

2 Our Results

Our first result establishes the upper bound γc ≤ γ + 1 in the class of connected (P6, C6)-free
graphs.

40

Theorem 2.1. For every connected (P6, C6)-free graph it holds that γc ≤ γ + 1.

To see that the bound given by Theorem 2.1 is best possible, consider the following family of
connected (P6, C6)-free graphs. For each k ∈ N, let Fk be the graph obtained from a k disjoint
copies of C4, by picking one vertex from every copy and identifying these picked vertices to
a single vertex x, and afterwards attaching a path of length 2 to x (see Fig. 1). It is easy to
see that, for all k, γc(Fk) = γ(Fk) + 1. Moreover, the graph Fk does not have a minimum
connected dominating set that contains a minimum dominating set as subset.

Figure 1: The black vertices indicate a minimum dominating set (resp. a minimum connected
dominating set) of F3.

Theorem 2.2. For every connected (P8, C8)-free graph it holds that γc/γ ≤ 2.

The bound provided by Theorem 2.2 is attained by an infinite number of connected (P7, C7)-
free graphs, given by the following construction. For every k ∈ N, let Hk be the graph defined
as follows (cf. Fig. 2). Start with k paths P 1, P 2, . . . , P k on three vertices each. For every
1 ≤ i ≤ k, choose an end-vertex vi of P i. Let Hk be the graph obtained from the disjoint
union of all P i, 1 ≤ i ≤ k, by adding all possible edges between the vertices vi, 1 ≤ i ≤ k. So,
Hk[{vi : 1 ≤ i ≤ k}] is a complete graph. It is easily seen that, for all k ∈ N, γc(Hk)/γ(Hk) = 2.

Figure 2: The black vertices indicate a minimum dominating set (resp. a minimum connected
dominating set) of H4.

A similar construction shows that (1) is asymptotically sharp in the class of connected
(P9, C9)-free graphs, in the sense that there is a family {Gk : k ∈ N} of (P9, C9)-free graphs
such that limk→∞ γc(Gk)/γ(Gk) = 3. For every k ∈ N let Gk be the graph obtained by
attaching a pendant vertex to every pendant vertex of Hk. It is easy to check that for every
k ≥ 2, γ(Gk) = k + 1 and γc(Gk) = 3k. Furthermore, Gk is (P9, C9)-free.

3 A Conjecture

We close this abstract with a conjecture that came up during our research. As Theorem 2.2
shows, γc ≤ 2γ holds in every connected (P8, C8)-free graph. However, γc(P8)/γ(P8) = 2 =
γc(C8)/γ(C8), i.e., both P8 and C8 do not violate the bound given by Theorem 2.2.

41

Conjecture 3.1. For every connected (P9, C9, H)-free graph, γc ≤ 2γ (see Fig. 3 for H).

Note that P9, C9, and H violate γc ≤ 2γ. Hence, if true, Conjecture 3.1 would give a
characterization of the largest graph class that is closed under connected induced subgraphs
where γc ≤ 2γ holds.

Figure 3: The graph H from Conjecture 3.1.

References

[1] J. Blum, M. Ding, A. Thaeler, X. Cheng, Connected Dominating Set in Sensor Networks
and MANETs, pp. 329–369, In: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial
Optimization, Springer US, Boston, 2005.

[2] E. Camby, J. Cardinal, S. Fiorini, O. Schaudt, The Price of Connectivity for vertex cover:
Perfect, Near-Perfect and Critical Graphs. in preparation.

[3] J. Cardinal, E. Levy, Connected vertex covers in dense graphs, Theor. Comput. Sci. 411
(2010), pp. 2581–2590.

[4] P. Duchet, H. Meyniel, On Hadwiger’s number and the stability number, Ann. Discrete
Math. 13 (1982), pp. 71–74.

[5] J. Fulman, A note on the characterization of domination perfect graphs, J. Graph Theory
17 (1993) pp. 47–51.

[6] M.C. Golumbic, Algorithmic graph theory and perfect graphs, North Holland 57 (2004).

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, CRC
208 (1998).

[8] P. van ’t Hof, D. Paulusma, A new characterization of P6-free graphs. Discrete Appl. Math.
158 (2010), pp. 731–740.

[9] E. Levy. (2009). Approximation Algorithms for Covering Problems in Dense Graphs. Ph.D.
thesis. Université libre de Bruxelles, Brussels.

[10] J. Liu, Y. Peng, C. Zhao, Characterization of P6-free graphs. Discrete Appl. Math. 155
(2007), pp. 1038–1043.

[11] O. Schaudt, On graphs for which the connected domination number is at most the total
domination number. Discrete Appl. Math. 160 (2012), pp. 1281–1284.

[12] I.E. Zverovich, Perfect connected-dominant graphs. Discuss. Math. Graph Theory 23
(2003), pp. 159–162.

[13] I.E. Zverovich, V.E. Zverovich, A semi-induced subgraph characterization of upper dom-
ination perfect graphs, J. Graph Theory 31 (1999), pp. 29–49.

42

Total L(2, 1)-coloring of graphs

Márcia R. Cerioli1,2 and Daniel F. D. Posner2

1Instituto de Matemática
2COPPE/Sistemas e Computação, Universidade Federal do Rio de Janeiro, Caixa Postal 68511,

21945-970, Rio de Janeiro, Brazil

We rise the problem of total L(2, 1)-coloring a graph and solve it for paths, cycles,
stars, wheels, and complete graphs. Moreover, we present tight lower bounds and
upper bounds for λT , the maximum integer used in an optimum total L(2, 1)-
coloring, for complete q-partite graphs and for trees. Furthermore, we show that
the total L(2, 1)-coloring problem is NP-complete even for bipartite graphs.

1 Introduction

Let G = (V,E) be a simple and undirected graph, with n = |V |, and m = |E|. The distance
between two vertices u and v of G is the number of edges in a shortest path between them in
G. For a vertex u, denote by N(u) the set of vertices adjacent to u in G and by Ne(u) the
set of edges incident to it. Let d(u) = |N(u)| be the degree of u ∈ V . A vertex is a universal
vertex if its degree is n− 1. Let ∆ = maxu∈V {d(u)}.

An L(2, 1)-coloring of a graph G = (V,E) is a function f : V → N such that if uv ∈ E, then
|f(u) − f(v)| ≥ 2, moreover, if vertices u and v have distance two, then f(u) 6= f(v). The
maximum integer used in an L(2, 1)-coloring f of a graph is the span of f and the minimum
span among all L(2, 1)-colorings of a graph G is denoted by λ(G) [4].

A total L(2, 1)-coloring f of a graphG = (V,E) is a function f : (V ∪E)→ N such that if uv ∈
E, then: |f(u)− f(v)| ≥ 2; |f(uv)− f(v)| ≥ 2; and |f(u)− f(uv)| ≥ 2; moreover, if uv and vw
are in E, then: f(uv) 6= f(vw), f(u) 6= f(vw), f(uv) 6= f(w), f(u) 6= f(w). The minimum span
among all total L(2, 1)-colorings of a graph is denoted by λT (G), or λT when no confusion arises.
An optimum total L(2, 1)-coloring is a total L(2, 1)-coloring whose span is equal to λT (G).

The square of G, denoted by G2 has the same vertices and edges of G plus the edges
between pairs of vertices having distance two in G. The incident graph H of G is obtained
by subdividing every edge of G. The total graph of G is the square of the incident graph of
G whereas the graph obtained by adding the edges of G to its incident graph, is denoted by
HG. Havet and Yu [5] studied (2, 1)-total colorings of a graph G which is equivalent to an
L(2, 1)-coloring of H. On the other hand, Duan et al. [2] considered L(2, 1)-colorings of the
total graph of G which is equivalent to an L(2, 1)-coloring of H2. A total L(2, 1)-coloring of a
graph G is equivalent to an L(2, 1)-coloring of HG. It is straightforward to notice that H is a
subgraph of HG, and HG is a subgraph of H2, i.e., a total L(2, 1)-coloring is settled between
these two other assignments, as can be seen in Figure 1.

The total L(2, 1)-coloring problem is the problem of giving a graph G and an integer
k, decide if there is a total L(2, 1)-coloring of G with span at most k.

43

G

H HG H

G

 0

 2

 2 2 0

 0

 3

1

1

1

3

2 2

1

0

0

0 4

4

4

1

1

1

4 4
51

32

1

1 2

0

1 1 0

 2

 3

 0

 2

 0

 0 2 2

 2

 3

 0 7

 7

 7

 7

 7

 7

 7

 0

 2

 5 3 0

 2 3

 5

 6

 5

 3

 0

 0 3

 3 5 5

 6

 3

 0

 6

 3 4

 4

 4

 4

 4

 4

 4

 4 4

8

 3

1

 5

 0

 6

 4

8 2

 4

 6

 5 8

 0

 3 6 3

 0 3

8
1 6

2

7464

1 1

2

G

Figure 1: (2, 1)-total, total L(2, 1), and L(2, 1)-coloring of the total graph of G

Three vertices u, v, w form a D2T set if d(u) = d(v) = d(w) = ∆ and the distance between
each two of them is at most 2. The following straightforward lemma states a lower bound for λT .

Lemma 1.1. For every graph, λT ≥ 2∆+1. Moreover, if the graph has a D2T set, λT ≥ 2∆+2.

2 Optimum total L(2, 1)-coloring

We give λT for some families of graphs. Due to lack of space we skip proofs of some small graphs.
A graph is a: (i) path graph (Pn) if E(Pn) = {vivi+1 | 1 ≤ i ≤ n− 1}; (ii) cycle graph (Cn) if

E(Cn) = {vivi+1 | 1 ≤ i ≤ n− 1}∪ {v1vn}; (iii) star graph (Sn) if it has a universal vertex and
all others have degree 1; (iv) wheel graph (Wn) if it is obtained by adding a universal vertex
to a graph Cn−1; (v) complete graph (Kn) if it has all possible edges between its vertices.

Theorem 2.1. For a Path graph Pn, with n ≥ 4, λT (Pn) = 6.

Proof. In [1] it was shown that for a path of triangles λ ≤ 6. It is possible to associate this
result with a total L(2, 1)-coloring of path graphs, using the top of the triangles labels on the
edges of Pn. Hence λT (Pn) ≤ 6. Moreover, by Lemma 1.1, λT (Pn) ≥ 2∆ + 2 = 6, n ≥ 5.

Theorem 2.2. For a Cycle graph Cn, with n 6= 5, λT (Cn) = 6.

Proof. By Lemma 1.1, λT (Cn) ≥ 2∆+2 = 6. Let Cn be described as (v1, e1, v2, e2, . . . , en−1, vn,
en). If n ≡ 0 mod 3, when n ≥ 6, label in a clockwise order: (i) (6, 1, 3, 5, 0, 2, 6, 1, 3, 5, 0, 2);
(ii) add recursively (6, 1, 3, 5, 0, 2) for other vertices and edges. If n ≡ 1 mod 3, when
n ≥ 7, label in a clockwise order: (i) (3, 5, 0, 2, 6, 4, 1, 3, 5, 2, 0, 4, 6, 1); (ii) add recursively
(3, 5, 0, 2, 6, 1) for other vertices and edges. If n ≡ 2 mod 3, when n ≥ 14, label in a clockwise
order: (i) (3, 5, 0, 2, 6, 4, 1, 3, 5, 2, 0, 4, 6, 1, 3, 5, 0, 2, 6, 4, 1, 3, 5, 2, 0, 4, 6, 1); (ii) add recursively
(3, 5, 0, 2, 6, 1) for other vertices and edges. It is interesting to note that λT (C5) = 7.

Theorem 2.3. For a Wheel graph (n ≥ 5) and a Star graph (n ≥ 3), λT = 2∆ + 1.

Proof. By Lemma 1.1, a wheel graph has λT ≥ 2∆+1. UnlessW4 (a complete graph), this lower
bound is tight. For Wn with n ≥ 7, label {0, . . . ∆ + 1} to its vertices cf. [4] (0 to the universal

44

vertex v and, in a clockwise order in the outer cycle, assign even labels in {2, . . . ,∆ + 1}, and
later the odd labels). Now, we can use labels in {∆+2, . . . , 2∆+1} to edges in Ne(v). Finally,
for an edge in the outer cycle, there are at most 10 forbidden labels and, there exists at least one
available label in {0, . . . , 2∆+1}. As Sn is subgraph of Wn, when n ≥ 5, λT (Sn) = 2∆+1.

Theorem 2.4. For complete graphs, λT (Kn) = 2n for even n, K3 and K5. Otherwise,
λT (Kn) = 2n+ 1 (unless λT (K1) = 0).

Proof. By Lemma 1.1, λT (Kn) ≥ 2∆ + 2 = 2n, when n ≥ 3. This lower bound is tight for K3,
K5, and Kn when n is even. Otherwise, we show that λT (Kn) = 2n+ 1. Assume λT (Kn) = 2n
when n ≥ 7 is odd. There are 2n + 1 labels in {0, 1, 2, . . . , 2n}. Every vertex of Kn must
receive a label that differ by at least two apart of each other. Thus, after an assignment of
vertices of Kn, there exist at most 4 labels without its consecutive values assigned to vertices
of the Kn. These 4 labels can cover at most n−1

2 edges each, and each of the others n − 3
labels can cover at most n−3

2 edges. As we are dealing with a complete graph, we need that

4 (n−1)
2 + (n − 3) (n−3)2 ≥ n (n−1)

2 . However, it requires that n ≤ 5, a contradiction. It is
interesting that, different from others odd complete graphs, λT (Kn) = 2n for K3 and K5.

One can obtain an optimum total L(2, 1)-coloring for odd complete graphs as follows: (i)
use even labels in {0, . . . , 2n− 4} to the vertices in a clockwise order, and label 2n to the last
vertex; (ii) for each odd i in {1, . . . , 2n−5}, label i to the n−3

2 parallel edges to the vertices that
received labels i− 1 and i+ 1; (iii) label 2n+ 1 to the n−1

2 edges of the outer cycle in such way
that they are not incident to the vertex with label 2n; (iv) similar, label 2n− 3 to the others
n−1
2 edges of the outer cycle; (v) label 2n−2 to the remaining edge of the outer cycle and to all

parallel edges of the vertices with label 2n− 4 and 2n; (vi) label 2n− 1 to the remaining edges
(the ones parallel to the vertices with labels 0 and 2n). Thus, λT (Kn) ≤ 2n+ 1 for odd values
of n. Furthermore, label 2n+ 1 is only used by edges of the complete graph, and every vertex
have at least one more available label different from the other vertices. As a consequence, one
can extend this assignment obtaining λT (Kn) = 2n for even n ≥ 8.

A set of vertices of V is a stable set if there is no edges between them. A complete q-partite
graph is a graph whose vertex set V can be partitioned into q stable sets V1, . . . , Vq and has
all the edges between vertices in different sets.

Let Vi be one of minimum size stable sets of a complete q-partite graph. Therefore, ∀v ∈ Vi,
d(v) = ∆). Every pair of vertices have distance two, and so receive different labels. There
is a vertex v in Vi with label f(v) such that f(v) − 1 or f(v) + 1 is not used in a vertex of
Vi. As every vertex in V (G) and every edge in Ne(v) get different labels, there exist, at least,
2+n−1+∆ = n+∆+1 different labels, which implies a span at least n+∆. Then, for complete
q-partite graphs, λT ≥ n+ ∆. Besides, if there is no universal vertex, then λT = n+ ∆. The
upper bound of λT is obtained using an optimum total coloring of complete q-partite graphs.

Theorem 2.5. For complete q-partite graphs n+ ∆ ≤ λT ≤ n+ ∆ + 2. Moreover, If there is
no universal vertex, then λT = n+ ∆.

A tree is a connected and acyclic graph. One can obtain a rooted version of this tree. Then,
label the root and its neighbourhood as a star graph. For the other vertices v, respecting its
depths in the tree, when v receives its label, it has one vertex and one edge already labeled in its
neighbourhood (the ones that precede it in the rooted tree). However, there are 2∆+1 sufficient
labels in {0, . . . , 2∆ + 2} to v and its at most 2∆− 2 unlabeled elements in N(v) and Ne(v).

Theorem 2.6. For a tree, 2∆ + 1 ≤ λT ≤ 2∆ + 2.

45

 0 2 3 4 15

 10 9 8 76

 11

 11

 11

 11

5 5 5

5
14

14

14

14

 1

 1

 1
 12 12

 12
 12

 13

 13 13 13

 13

 0 15 0 015

(x y z)
_

 x y
_

 2 01515 2

F T T F T

copies
 x x

_

x x

 z y x

 12

 0 2 3 4 15

 10 9 8 76

 11

 11

 11

 11

5 5 5

5
14

14

14

14

 1

 1

 1
 12 12

 12
 12

 13

 13 13 13

 13

 0 15 0 015

(x y z)
_

 x y
_

 2 01515 2

F T T F T

copies

 z y x

 12

15

15 0

0 0 15 15 x x x
_

x
_

15 15 15 0 0 0 0x
_

x
_

x
_

x
_

xx

Figure 2: The graph G corresponding to a nae 3-sat instance

3 NP-completeness

We give a sketch of the proof from the NP-complete problem nae 3-sat [3]. Given an instance
of nae 3-sat, construct a bipartite graph G with ∆ = 7 as follows: (i) for each literal x
construct a tree that replicates the values of x and x (e.g., if x is true, f(x) = 0 and f(x) = 15)
in vertices with degree ∆ (unless the ones near the leaves which have ∆ − 1), two times the
number of appearance of the literal; (ii) for each clause, construct a bipartite complete graph
K5,5; (iii) add edges between vertices of one part of each K5,5’s to the vertices with degree
∆− 1 that represent their literals (complete the two others with any of these literals).

Assume λT (G) = 15, by Lemma 1.1, vertices with degree ∆ need labels 0 or 15. By Theo-
rem 2.5, λT (K5,5) = n + ∆ = 15. Additionally, there are vertices or edges of K5,5’s receiving
label 0 or 15 (otherwise λT (K5,5) = 14). If all vertices near the leaves connected to a K5,5 have
the same label (0 or 15) (i.e., every literal in a clause have the same value) that label is not
used in vertices or edges of the K5,5, a contradiction. Conversely, if we assume the formula is
true, we give a total L(2, 1)-coloring of G with span 15 as follows: (i) each K5,5 can be labeled
as in Figure 2; (ii) vertices and edges of the tree can be labeled as in Theorem 2.6 (for a vertex
v, there are two labeled vertices and two labeled edges in its neighbor, however, there exists
an assignment of the remaining 11 labels to v and the unlabeled elements in N(v) and Ne(v)).

Theorem 3.1. The total L(2, 1)-coloring problem is NP-complete even bipartite graphs.

References

[1] Bonomo, F. and Cerioli, M. R., On L(2, 1)-labeling of block graphs, Int. J. Comput. Math.
88 (2010), 468–475.

[2] Duan, Z., Lv, P., Miao, L., Miao, Z. and Wang, C., The ∆2-conjecture for L(2, 1)-labelings
is true for total graphs, Appl. Math. Letters, 24 (2011), 1491–1494.

[3] Garey, M. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., (1979).

[4] Griggs, J. R. and Yeh, R. K., Labelling graphs with a condition at distance 2, SIAM J.
Disc. Math., 5 (1992), 586–595.

[5] Havet, F. and Yu, M.-L., (p, 1)-total labelling of graphs, Disc. Math. 308 (2008), 496–513.

46

Testing Uniformity of Stationary
Distribution

Sourav Chakraborty1, Akshay Kamath1, and Rameshwar Pratap1

1Chennai Mathematical Institute, Chennai, India

1 Introduction

Markov chains are one of the most important and most studied structures in Theoretical
Computer Science. The most important characteristics of a Markov chain are its stationary
distribution and its mixing time. In particular, one often wants to know if a given distribution
is a stationary distribution of a given Markov chain. In this paper, we focus on the Markov
chain obtained by a random walk on a directed graph. Stationary distribution of a Markov
chain is a global property of the graph, hence whether a particular distribution is a stationary
distribution of a Markov chain depends on the global structure of that Markov chain. We
prove that contrary to normal perception, if the graph is regular then whether the uniform
distribution on the vertices of the graph is a stationary distribution depends on a local property
of the graph. The following theorem, which is the main result of this paper, is a statement
about that local property. (See [3] for full version of this paper.)

Theorem 1.1. If
−→
G = (V,

−→
E) is a digraph such that the total degree (that is Indegree(v) +

Outdegree(v)) for every vertex v ∈ V is the same, then the uniform distribution on the vertices

of
−→
G is a stationary distribution (for the Markov chain generated by a random walk on

−→
G) if

and only if the graph have the following properties:

1. For all v ∈ V , Indegree(v) 6= 0 and Outdegree(v) 6= 0,

2. For every edge (u, v) ∈ −→E , Outdegree(u) = Indegree(v).

2 Preliminaries

2.1 Graph Notations

Throughout this paper, we will be dealing with directed graphs (possibly with multiple edges
between any two vertices) in which each edge is directed only in one direction. We will call

them oriented graphs. We will denote the oriented graph by
−→
G = (V,

−→
E) and the underlying

undirected graph (that is when the direction on the edges are removed) by G = (V,E). For

a vertex v ∈ V , the in-degree and the out-degree of v in
−→
G are denoted by d−(v) and d+(v)

respectively. An oriented graph
−→
G = (V,

−→
E) is called a degree-∆ oriented graph if for all v ∈ V ,

d−(v) + d+(v) = ∆. In this paper, we will be focusing on degree-∆ oriented graphs.

47

2.2 Markov Chains

A Markov chain is a stochastic process on a set of states given by a transition matrix. Let S
be the set of states with |S| = n. Then, the transition matrix T is a n× n matrix with entries
from positive real; the rows and columns are indexed by the states; the u, v-th entry Tu,v of
the matrix denotes the probability of transition from state u to state v. Since T is stochastic,∑

v Tu,v must be 1. A distribution µ : S → R+ on the vertices is said to be stationary if for all
vertices v, ∑

v

µ(u)Tu,v = µ(v).

If
−→
G is an oriented graph then a random walk on

−→
G defines a Markov chain, where, the

states are the vertices of the graph; the probability to traverse an edge is given by the quantity
pu,v = 1

d+(u)
; and hence, the transition probability Tu,v from vertex u to vertex v is pu,v times

the number of edges between u and v. The uniform distribution on the vertices of
−→
G is a

stationary distribution for this Markov chain if and only if for all v ∈ V ,

∑

u:(u,v)∈−→E

pu,v = 1 =
∑

w:(v,w)∈−→E

pv,w.

3 Structure of Graphs with Uniform Stationary Distribution

The following Theorem is a rephrasing of Theorem 1.1.

Theorem 3.1. Let
−→
G = (V,

−→
E) be a degree-∆ oriented graph, then the uniform distribution

on the vertices of
−→
G is a stationary distribution (for the Markov chain generated by a random

walk on
−→
G) if and only if for all v ∈ V , both d−(v), d+(v) 6= 0 and for all (u, v) ∈ −→E ,

d+(u) = d−(v)

Proof. First of all, note that the uniform distribution is a stationary distribution for
−→
G , iff for

all v ∈ V ∑

u:(u,v)∈−→E

pu,v = 1 =
∑

w:(v,w)∈−→E

pv,w,

where pu,v is the transition probability (defined in subsection 2.2) from vertex u to vertex v.

Thus, if the graph
−→
G has the property that for all (u, v) ∈ −→E , d+(u) = d−(v), then note

that ∑

u:(u,v)∈−→E

pu,v =
∑

u:(u,v)∈−→E

1

d+(u)
=

∑

u:(u,v)∈−→E

1

d−(v)
= 1,

the last equality holds because the summation is over all the edges entering v (which is non-
empty) and thus have d−(v) number of items in the summation.

Similarly, we can also prove that
∑

w:(v,w)∈−→E pv,w = 1. Thus, we have proved this direction.

Now let us prove the other direction, that is, let us assume that the uniform distribution
is a stationary distribution for the Markov chain. Note that, if the uniform distribution is a
stationary distribution then there is a path from u to v if and only if u and v are in the same

48

strongly connected component of
−→
G . This is because the uniform distribution is a stationary

distribution if and only if for every cut C = V1 ∪ V2 where V2 = (V \V1), we have
∑

(u,v)∈−→E , and u∈V1,v∈V2

pu,v =
∑

(u,v)∈−→E , and u∈V2,v∈V1

pu,v.

In other words, if a stationary distribution is uniform then it implies that every connected
component in the undirected graph is strongly connected in the directed graph.

Let v0, v1, v2, . . . , vt be a sequence of vertices such that the following conditions are satisfied.
We call such a sequence as “degree-alternating” sequence of vertices.

• For all i ≥ 0, (vi+1, vi) ∈
−→
E

• For all i ≥ 0, d+(v2i+1) = min
{
d+(w) : (w, v2i) ∈

−→
E
}

and

• For all i > 0, d+(v2i) = max
{
d+(w) : (w, v2i−1) ∈

−→
E
}

Claim 3.2. Let {vi} be a “degree-alternating” sequence of vertices. If we define a new sequence
{S} of positive integers as: for all k ≥ 0, s2k = d−(v2k) and s2k+1 = d+(v2k+1), then this
sequence of positive integers is a non-increasing sequence. Moreover, if vi and vi+1 are two
consecutive vertices in the sequence such that d−(vi+1) 6= d+(vi) then si+1 < si.

Using this claim, we would finish the proof of Theorem 3.1. Let there be one vertex w ∈ V
such that d+(u) 6= d−(w) for some edge (u,w) ∈ −→E . Let w′ be the vertex such that (w′, w) ∈ −→E
and

d+(w′) = min{d+(u) : (u,w) ∈ −→E }.
Since we have already argued that in the graph every connected component has to be strongly

connected, we can create an infinite sequence of vertices such that w and w′ appears consecu-
tively and infinitely often. Now by Claim 3.2, it means that the sequence {S} is a non-increasing
sequence that decreases infinitely many times. But this cannot happen as all the numbers in the
sequence {S} represent in-degree or out-degree of vertices and hence, are always finite integers
and can never be negative. Thus, if one vertex w ∈ V such that d+(u) 6= d−(w) for some edge

(u,w) ∈ −→E then we hit a contradiction. Thus, for all edges (u, v) ∈ −→E , d+(u) = d−(v).

Proof of Claim 3.2. This proof uses the fact that since the uniform distribution is a stationary
distribution for the Markov chain, for all vertices v

∑

u:(u,v)∈−→E

1

d+(u)
= 1 =

∑

w:(v,w)∈−→E

1

d+(v)
.

Let us first prove that in the sequence {S}, s2i ≥ s2i+1.

Since d+(v2i+1) = min
{
d+(w) : (w, v2i) ∈

−→
E
}

,

1 =
∑

(u,v2i)∈
−→
E

1

d+(u)
≤ d−(v2i)

d+(v2i+1)
, (1)

and hence, we have d−(v2i) ≥ d+(v2i+1) which by definition gives s2i ≥ s2i+1.
Now let us also prove that in the sequence {S}, s2i−1 ≥ s2i. By definition, this is same

as proving d+(v2i−1) ≥ d−(v2i). Since we have assumed that the graph is a degree-∆ graph,
proving s2i−1 ≥ s2i is same as proving d−(v2i−1) ≤ d+(v2i). Now, using arguments smililar to
previous case we can also prove that si+1 < si.

49

From Theorem 3.1 we can also obtain the following corollary. Both Theorem and Corollary
has an application to property testing. We briefly present this application in next section.

Corollary 3.3. Let
−→
G = (V,

−→
E) be a connected degree-∆ oriented graph. Then the uniform

distribution of vertices is a stationary distribution for the random walk markov chain on
−→
G , if

and only if the following conditions apply:

1. If G = (V,E) is non-bipartite, then the graph
−→
G is Eulerian.

2. If G is bipartite with bipartition V1∪V2 = V then |V1| = |V2| and in-degree of all vertices
in one partition will be same and it will be equal to out-degree of all vertices in other
partition.

4 Application to Property Testing

In property testing, the goal is to look at a very small fraction of the input and distinguish
whether the input has a certain property or it is “far” from satisfying the property. Here
“far” means that one has to change at least ε fraction of the input to make the input satisfy
the property. Theorem 1.1 also has an application to the problem of testing whether a given
distribution is uniform or “far” from being uniform. More precisely, if the distribution is the
stationary distribution of the random walk on a directed graph and the graph is given as an
input, then how many bits of the input graph do one need to query in order to decide whether
the distribution is uniform or “far” from it? We consider this problem in the orientation
model 1 (see [2]). We reduced this problem to testing Eulerianity in the orientation model.
And using result from [1] on query complexity of testing Eulerianity, we obtain bounds on the
query complexity for testing whether the stationary distribution is uniform.

5 Conclusion

The result holds only for graphs where the in-degree plus out-degree of all the vertices are the
same. It would be interesting to see if one can make a similar statement for general graphs.

References

[1] Eldar Fischer, Oded Lachish, Ilan Newman, Arie Matsliah, and Orly Yahalom. On the
query complexity of testing orientations for being eulerian. In APPROX-RANDOM, pp.
402-415, 2008.

[2] Shirley Halevy, Oded Lachish, Ilan Newman, and Dekel Tsur. Testing properties of
constraint-graphs. In IEEE Conference on Computational Complexity, pp. 264-277, 2007.

[3] Sourav Chakraborty, Akshay Kamath, and Rameshwar Pratap. Testing Uniformity of Sta-
tionary Distribution. CoRR, abs/1302.5366, 2013.

1In orientation model, underlying undirected graph is known in advance and one has to query the orientation
of edges in order to test the property. The graph is said to be “ε-far” from satisfying the property if one has
to reorient at least ε fraction of the edges to make the graph have the property.

50

Balanced Abelian group valued functions
on directed graphs: Extended abstract∗

Yonah Cherniavsky1, Avraham Goldstein2, and Vadim E. Levit3

1Department of Computer Science and Mathematics, Ariel University, Israel; yonahch@ariel.ac.il
2City University, New-York, USA; avraham.goldstein.nyc@gmail.com

3Department of Computer Science and Mathematics, Ariel University, Israel; levitv@ariel.ac.il

1 Introduction

Let A be an Abelian group with the group operation denoted by + and the identity element
denoted by 0. Let G be a graph. Roughly speaking, an A-valued function f on vertices and/or
edges of G is called balanced if the sum of its values along any cycle of G is 0. Our cycles are
not permitted to have repeating edges.

The study of balanced functions can be conducted in three cases:

1. The graph G is directed with the set of vertices V and the set of directed edges E. When
traveling between the vertices, we are allowed to travel with or against the direction of
the edges. The value of a function f on ē, which represents traveling the edge e against
its direction, is equal to −f(e). In this context, when the function is defined on edges
only, the pair (G, f) is called a network or a directed network. In this paper we shall
call this the flexible case, meaning that the direction of an edge does not forbid us to
walk against it. The notion of balanced functions on edges for the flexible case, for
functions taking values only on the edges, is introduced in the literature under different
names. Thus, for example, in [1] the set of such functions is exactly Im(d) and in [6],
in somewhat different language, that set is referred-to as the set of consistent graphs. In
a rather common terminology introduced by Zaslavsky, [8], a pair of graph and such a
function on edges of a graph is a gain graph.

2. The graph G is directed with the set of vertices V and the set of directed edges E, but
we are only allowed to travel with the direction of the edges. In this paper we shall
call this the rigid case. When f takes values only on the edges then in some literature,
following Sierre, the flexible case is described as a particular instance of the rigid case
by introducing the set E as the new set of directed edges of G (the cardinality of E is
twice that of E), denoting by ē ∈ E the inverse of the directed edge ē ∈ E and requiring
f(ē) = −f(e), [1], [7].

3. The graph G is undirected. The value of a function f on an edge e does not depend on
the direction of the travel on e. This case was studied in [2], [5] and [3].

∗For the full-text paper see [4].

51

2 Results

In what follows we say that a directed graph is weakly connected if its underlying undirected
graph is connected.

2.1 The flexible case.

Let G = (V,E) be a weakly connected directed graph, possibly with loops and multiple edges.
Let v, w ∈ V be two vertices connected by an edge e; v is the origin of e and w is the endpoint
of e. For e ∈ E denote by ē the same edge as e but taken in the opposite direction. Thus ē goes
from w to v. Let E = {e, ē | e ∈ E}. A path p from a vertex x to a vertex y is an alternating
sequence v1, e1, v2, e2, ..., vn, en of vertices from V and edges from E such that v1 = x and each
ej , for j = 1, ..., n− 1, goes from vj to vj+1 and en goes from vn to y. A cycle is a path from
a vertex to itself. The length of a cycle is the number of its edges.

Definition 2.1. A function f : E → A such that f(ē) = −f(e) is called balanced if the sum
f(e1) + ...+ f(en) of the values of f over all the edges of any cycle of G is equal to 0.

Definition 2.2. The set of all the balanced functions f : E → A is denoted by HF(E, A).
HF(E, A) is a subgroup of the Abelian group AE of all the functions from E to A.

Definition 2.3. A function g : V → A is called balanceable if exists some f : E→ A such that
f(ē) = −f(e) and the sum of all the values g(v1) + f(e1) + g(v2) + f(e2) + ...+ g(vn) + f(en)
along any cycle of G is zero. We say that this function f : E → A balances the function
g : V → A.

Definition 2.4. The set of all the balanceable functions g : V → A is denoted by BF(V,A).
The group BF(V,A) is a subgroup of the free Abelian group AV of all the functions from V
to A.

Definition 2.5. A function h : V
⋃
E→ A, which takes both vertices and edges of G to some

elements of A, is called balanced if h(ē) = −h(e) and the sum of its values h(v1) + h(e1) +
h(v2) + h(e2) + ...+ h(vn) + h(en) along any cycle of G is zero.

Definition 2.6. The set of all the balanced functions h : V
⋃
E→ A is denoted byWF(G,A).

The groupWF(G,A) is a subgroup of the Abelian group AV
⋃

E of all the functions from V
⋃
E

to A.

Clearly, any balanced function f ∈ HF(E, A) can be viewed as a balanced function from
V
⋃
E to A which takes zero value on every vertex of G. Thus, we will regard HF(E, A) as a

subgroup of WF(V
⋃

E, A).

Proposition 2.7. The quotientWF(V
⋃
E, A)/HF(E, A) is naturally isomorphic to BF(V,A).

Definition 2.8. The subgroup of all elements of A of order 2 is denoted by A2.

The following fact about the group HF(E, A) is well known.

Proposition 2.9. The group HF(E, A) is isomorphic to A|V |−1.

Theorem 2.10. Let G = (V,E) be a weakly connected directed graph and G′ be its underlying
undirected graph. Then:

52

1. If G′ is bipartite, then the group WF(V
⋃
E, A) is isomorphic to A|V |.

2. If G′ is not bipartite, then WF(V
⋃
E, A) is isomorphic to A2 ×A|V |−1.

Notice that if the graph G′ is bipartite, then the group of balanceable functions BF(V,A) is
isomorphic to A and if G′ is not bipartite, then the group of balanceable functions BF(V,A)
is isomorphic to A2 - the group of involutions of A.

2.2 The rigid case.

Let G = (V,E) be a weakly connected directed graph. Recall that in this case we are allowed
to walk only in the direction of an edge but not against it. It naturally changes the notion of a
path and of a cycle in comparison with the flexible case. Similarly to the flexible case denote
by BR(V,A), HR(E,A) and WR(V

⋃
E,A) the groups of balanceable functions on vertices,

balanced functions on edges and balanced labelings of the graph G respectively.

Proposition 2.11. Any function on V is balanceable, i.e. BR(V,A) = AV .

Definition 2.12. Two vertices x and y of G are called strongly connected if exists a path P1

from x to y and a path P2 from y to x.

Strong connectivity defines an equivalence relation on the vertices of G. The equivalence
classes of strongly connected vertices, together with all the edges between the vertices in each
class, are called the strongly connected components of G. We denote the number of strongly
connected components of G by k̄(G).

Lemma 2.13. If k̄(G) = 1, then the group HR(E,A) is isomorphic to A|V |−1 just like in the
flexible case.

Theorem 2.14. The group HR(E,A) is isomorphic to A|V |−k̄(G)+r(G), where r(G) is the
number of all the edges in G which go from a vertex in one strongly connected component of
G to a vertex in another strongly connected component of G.

Theorem 2.15. WR(V
⋃
E,A) is isomorphic to A|V | ×A|V |−k̄(G)+r(G)

We finish with following simple claim, which connects this work to [3].

Proposition 2.16. Let G be an undirected connected graph and let Gdir be a directed graph
obtained from G by any assigning of directions to the edges of G. Denote by H(E,A) the group
of A-valued balanced functions on edges of G. Choose any order on edges of G and embed
H(E,A) and HR(E(Gdir), A) into A|E|. For an undirected graph G the group of balanced
functions on edges of G is equal to the intersection of all the groups HR(E(Gdir), A), where
Gdir runs over all directed graphs for all 2|E| possible direction assignments to the edges of G.
The same is true for the groups of balanced functions on the entire graph (both vertices and
edges). Namely, W (V

⋃
E,A) =

⋂WR(V
⋃
E(Gdir), A).

References

[1] Roland Bacher, Pierre de la Harpe, Tatiana Nagnibeda. The lattice of integral flows and
the lattice of integral cuts on a finite graph. Bulletin del la S.M.F., tome 125, number 2
(1997).

53

[2] R. Balakrishnan and N. Sudharsanam. Cycle vanishing edge valuations of a graph. Indian
J. Pure Appl. Math. 13 (3) (1982), 313− 316.

[3] Y. Cherniavsky, A. Goldstein and V. E. Levit. On the structure of the group of balanced
labelings on graphs. Preprint available at http://arxiv.org/abs/1301.4206.

[4] Y. Cherniavsky, A. Goldstein and V. E. Levit. Balanced Abelian group valued functions
on directed graphs. Preprint available at http://arxiv.org/abs/1303.5456.

[5] Manas Joglekar, Nisarg Shah, Ajit A. Diwan. Balanced group-labeled graphs. Discrete
Mathematics 312 (2012), 1542− 1549.

[6] Martin Kreissig, Bin Yang. Efficient Synthesis of Consistent Graphs. EURASIP, 2010, ISSN
2076− 1465, 1364− 1368.

[7] Sierre, Jean-Pierre. Arbres, amalgames, SL2 (1977; Trees).

[8] T. Zaslavsky. A mathematical bibliography of signed and gain graphs and allied areas.
Electron. J. Combin. 5, (1998). Dynamic Surveys in Combinatorics, No. DS8 (electronic).

54

An oriented 8-coloring for acyclic oriented
graphs with maximum degree 3

Hebert Coelho1, Luerbio Faria2, Sylvain Gravier3, and Sulamita Klein4

1INF/UFG, Goiás, Brazil and COPPE/Sistemas - UFRJ, Rio de Janeiro, Brazil
2DCC/UERJ, Rio de Janeiro, Brazil.

3Institut Fourier, Maths à Modeler team, CNRS - UJF, St Martin d’Hères, France.
4Instituto de Matemática and COPPE/Sistemas - UFRJ, Rio de Janeiro, Brazil

1 Introduction

The oriented coloring was introduced independently by Courcelle [2] and Raspaud and
Sopena [5]. Let ~G be an oriented graph, xy, zt ∈ A(~G) and C = {1, 2, . . . , k} be a set of
colors. An oriented k-coloring of ~G is a function φ : V (~G)→ C, such that φ(x) 6= φ(y), and if
φ(x) = φ(t), then φ(y) 6= φ(z). The oriented chromatic number χo(~G) is the smallest k such
that ~G admits an oriented k-coloring. Let ~G1 and ~G2 be two oriented graphs, a homomor-
phism of ~G1 to ~G2 is a mapping f : V (~G1) → V (~G2) such that f(u)f(v) ∈ A(~G2) whenever
uv ∈ A(~G1). Clearly, ~G has an oriented k-coloring if and only if there is a tournament ~T on k
vertices, such that ~G has a homomorphism to ~T . If ~G has a homomorphism to ~T , then ~G is
~T -colorable.

We denote the minimum and maximum indegrees, and the minimum and maximum outde-
grees of ~G respectively by δ−(~G), ∆−(~G), δ+(~G) and ∆+(~G). We consider also δ(~G) = δ(G) = δ
and ∆(~G) = ∆(G) = ∆, where G is the underlying graph of ~G.

Oriented coloring has been studied by many authors. A survey on oriented coloring can be
seen in [7]. Given an oriented graph ~G and a positive integer k, the oriented coloring
problem (ocnk) consists of determining whether there exists an oriented k-coloring of ~G.
By its strong appeal, ocnk complexity has been exhaustively studied. In 2006, Culus and
Demange [3] presented two NP-complete results from 3-SAT: that ocn4 is NP-complete on
acyclic oriented graphs with ∆ = max(p + 3; 6), and that ocn4 is NP-complete on bipartite
oriented graphs with ∆ = max(p+ 3; 7), where p denotes the maximum number of occurrences
of a literal. Most recently, in 2010, Ganian and Hliněný [4] got an improvement in the Culus
and Demange acyclic result proving that ocn4 is NP-complete for connected acyclic oriented
graphs with ∆ = max(p + 2; 4). We proved that ocn4 is NP-complete [1] even when ~G is
connected, planar, bipartite, acyclic oriented graph with ∆ ≤ 3.

In this paper we are concerned with upper bounds and algorithms for determining oriented
coloring of oriented graphs with ∆ ≤ 3. Sopena and Vignal [8], exhibited a proof that if ~G is
an oriented graph with ∆ ≤ 3, then χo(~G) ≤ 11. In 1997 Sopena [6] posed a conjecture that: if
~G is an oriented graph such that ∆ ≤ 3 and G is connected, then χo(~G) ≤ 7. In this work, we
prove that there is a tournament ~R with 8 vertices such that if ~G is an acyclic oriented graph
with ∆ ≤ 3, then ~G is ~R-colorable. Additionally, we provide a polynomial time algorithm to
compute an R-coloring for ~G.

55

2 The Color Digraph ~R

Let ~G be an oriented graph with ∆ ≤ 3. In this section, we show an oriented graph ~R on 8
vertices such that ~G admits an ~R−coloring. Let p be a prime power such that p ≡ 3(mod 4),
the Paley tournament ~QRp is an oriented graph with V (~QRp) = {0, 1, . . . , p − 1} and such

that xy ∈ A(~QRp) if and only if y − x is a non-zero quadratic residue of p. In this work

we are concerned only with ~QR7, see Figure 1(a), that is the tournament with vertex set
V (~QR7) = {0, 1, . . . , 6} and such that xy ∈ A(~QR7) if an only if y − x ≡ 1, 2 or 4 (mod 7).

Observe that the transitive tournament ~T4, see Figure 1(c), is an oriented acyclic graph
with ∆(~T4) = 3, which is not ~QR7-colorable. Note that each vertex v ∈ V (~QR7) has 3
successors, however the three successors of v always form a directed cycle, the same holds
with the predecessors of v. Hence, there is no homomorphism from ~T4 to ~QR7, since the 3
successors of the vertex a ∈ V (~T4) defines an acyclic graph. We build the graph ~R from ~QR7

by the addition of vertex s, and the set of arcs ~S = {sv : v ∈ V (~QR7)}. We consider the colors
{0, 1, 2, 3, 4, 5, 6} assigned to the vertices of ~QR7 and the color 7 assigned to vertex s.

Figure 1: (a) Paley tournament ~QR7, (b) Oriented graph ~R, (c) transitive tournament ~T4.

3 ~R-coloring of an acyclic oriented graph ~G with ∆ ≤ 3

Lemma 3.1. If ~QR7 is the Paley tournament on 7 vertices, then for each arc xy ∈ A(~QR7)
there are a, b, c, d ∈ {0, 1, 2, 3, 4, 5, 6} such that ax, ay, xb, by, cx, yc, xd, yd ∈ A(~QR7).

It is proved in [6] that ~QR7 is the smallest graph satisfying the property of Lemma 3.1.
Let ~G be an oriented graph, u, v, w ∈ V (~G). Let φ be an ~R-coloring for ~G \ {w}, where u

and v take colors φ(u), φ(v) in {0, 1, 2, 3, 4, 5, 6}. The triple (w, φ(u), φ(v)) = k is the smallest
color k in {0, 1, 2, 3, 4, 5, 6}, such that k has the same adjacency relation with φ(u) and φ(v) in
~QR7, as w has with u and v in ~G. Please follow Figure 1(a). For example, if wu, vw ∈ A(~G),
φ(u) = 0 and φ(v) = 1, then triple (w, φ(u), φ(v)) = 3. Note that the colors inciding in 0 are
3, 5, 6, while the colors incided by 1 are 2, 3 and 5.

Lemma 3.2. Let φ be an ~R-coloring of an acyclic oriented graph ~G such that ∆ ≤ 3. If
there is a vertex x ∈ V (~G), such that deg+~G

(x) = 3 and φ(x) ∈ {0, 1, 2, 3, 4, 5, 6}, then a new

~R-coloring φ′ can be defined from φ by replacing color φ(x) of x by the color φ′(x) = 7.

Proof. See that vertex s is a predecessor of all vertices in (V (~R)\s) ⊆ V (~QR7). As deg+~G
(x) = 3,

there is no conflict if we replace φ(x) by the color φ′(x) = 7.

Lemma 3.3. Let φ be an ~R-coloring of an acyclic oriented graph ~G with ∆ ≤ 3. If there is a
vertex x ∈ V (~G), such that degG(x) ≤ 2 and φ(x) = 7, then a new ~R-coloring φ′ can be defined
from φ by replacing color φ(x) of x by one color φ′(x) in {0, 1, 2, 3, 4, 5, 6}.

56

Proof. If φ(x) = 7 and degG(x) ≤ 2, then x is a source vertex. If degG(x) = 0, then any color in
{0, 1, 2, 3, 4, 5, 6} can be assigned to x. Suppose 1 ≤ degG(x) ≤ 2. Let NG(x) = {u1, udegG(x)}.
By Lemma 3.1, color: triple

(
x, φ(u1), φ(udegG(x))

)
in {0, 1, 2, 3, 4, 5, 6} can be assigned to x.

Theorem 3.4. If ~G is an acyclic oriented graph, ∆ ≤ 3, then there is an ~R-coloring for ~G.

The proof is done by induction on n = |V | in several cases. In order to illustrate the
technique we consider the case in Figure 2 where there is a source s of ~G adjacent to a vertex
h, NG(h) = {s, c, d} and dh, hc ∈ A(~G).

Figure 2: One case for deg ~G(s) = 3 and deg ~G(h) = 3.

In this case, we construct ~H from ~G by the removal of vertex h from ~G and addition of the
arc dc to A(~H). Note that the arc dc does not create a cycle in ~H. By induction hypothesis
we can assign an ~R-coloring φ ~H for ~H. As dc ∈ A(~H), then φ ~H(c) 6= φ ~H(d). Now we use φ ~H ,

and Lemmas 3.1, 3.2 and 3.3 in order to define an ~R-coloring φ ~G to ~G into 2 steps, see the

oriented graph ~F in Figure 2.
The structure of the proof of Theorem 3.4 yields a polynomial time method which allows to

device a polynomial time algorithm to color an acyclic oriented graph with ∆ ≤ 3.
Next, we describe the procedure color(~Gi) yielding an oriented 8-coloring from an acyclic

oriented graph ~G = (V,A), ∆ ≤ 3 and n = |V | vertices. The execution starts with the call:
color(~Gn), where ~Gn = ~G.

Procedure color(~Gi);
begin

if (|V (~Gi)| > 1) then

Find source si in ~Gi;

if (deg~Gi
(si) = 3) then

{Let N~Gi
(si) = {hi, ai, bi}};

if (deg~Gi
(hi) = 3) then

{Let N~Gi
(hi) = {si, ci, di}};

~Gi−1 ← ~Gi \ hi;
if (ci−1di−1 /∈ Ai−1 and di−1ci−1 /∈ Ai−1) then

if (ci−1hi−1 ∈ Ai−1 and hi−1di−1 ∈ Ai−1) then
Ei−1 ← Ei−1 ∪ {ci−1di−1};

if (di−1hi−1 ∈ Ai−1 and hi−1ci−1 ∈ Ai−1) then
Ei−1 ← Ei−1 ∪ {di−1ci−1};

else ~Gi−1 ← ~Gi \ si;
if (deg~Gi

(si) = 2) then

N~Gi
(si) = {ai, bi};

~Gi−1 ← ~Gi \ si;
if (deg~Gi

(si) = 1) then
N~Gi

(si) = {ai};
~Gi−1 ← ~Gi \ si;

color(~Gi−1);
if (deg~Gi

(si) = 3) then

57

if (deg~Gi
(hi) = 3) then

φ(hi) := triple (h(i), φ(ci), φ(di));
φ(si) := 7;

else φ(si) := 7;
if (deg~Gi

(si) = 2) then
φ(si) := triple (si, φ(ai), φ(bi));

if (deg~Gi
(si) = 1) then

φ(si) := triple (si, φ(ai), φ(ai));
else φ(v) := 0;

end;

4 Conclusion

Up to the moment, we have verified, using a brute force algorithm, that if ~G is a cubic graph
with |V (~G)| ≤ 12, then χo(~G) ≤ 7. Our computational result is a positive evidence to support
the conjecture of Sopena [6].

In this work, we prove that there is a color graph ~R on 8 vertices such that every acyclic
oriented graph ~G with ∆(~G) ≤ 3 is ~R-colorable. Additionally, we provide a polynomial time
algorithm to compute an oriented 8-coloring for ~G.

References

[1] H. Coelho, L. Faria, S. Gravier, and S. Klein. Oriented coloring in planar, bipartite,
bounded degree 3 acyclic oriented graphs. ENDM. To appear on proceedings of the VII
Latin-American Algorithms, Graphs, and Optimization Symposium LAGOS, 2013.

[2] B. Courcelle. The monadic second order logic of graphs vi: On several representations of
graphs by relational structures. Discrete Applied Mathematics, 54:117–149, 1994.

[3] J. Culus and M. Demange. Oriented coloring: Complexity and approximation. 32rd Con-
ference on Current Trends in Theory and Practice of Computer Science - LNCS 3831,
pages 226–236, 2006.

[4] R. Ganian and P. Hliněný. New results on the complexity of oriented colouring on restricted
digraph classes. SOFSEM’10, LNCS, 5901:428–439, 2010.

[5] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar graphs.
Information Processing Letters, 51:171–174, 1994.

[6] E. Sopena. The chromatic number of oriented graphs. Journal of Graph Theory, 25:191–
205, 1997.

[7] E. Sopena. Oriented graph coloring. Discrete Mathematics, 229:359–369, 2001.

[8] E. Sopena and L. Vignal. A note on the oriented chromatic number of graphs with maximum
degree three. Technical report, Université Bordeaux I, 1996.

58

Bound-optimal cutting planes

Stefano Coniglio∗1

1Lehrstuhl II für Mathematik, RWTH Aachen University, Aachen

We propose a new paradigm for cutting plane generation for Mixed Integer Pro-
gramming which allows for the simultaneous generation of k cuts which, when
added to the current linear programming relaxation, yield the largest bound im-
provement. By Linear Programming duality arguments and simple linearizations
we show that, for a large family of cutting planes, our cut generation problem is a
Mixed 0-1 Integer Program. We present preliminary computational experiments on
the generation of bound-optimal stable set inequalities for the max clique problem,
which suggest the potential of the idea.

1 Introduction

Consider the following Mixed Integer Program (MIP) over n variables, p of which integer
constrained, P := max{cx : Ax ≤ b, x ∈ Zp × Qn−p}. Let PLP := max{cx : Ax ≤ b, x ∈ Qn}
be its Linear Programming (LP) relaxation and let x∗ be (one of) its optimal solution(s). Let
us focus on a single family of valid inequalities αx ≤ α0 with coefficients (α, α0) belonging to
some set C. It is common practice in cutting plane methods for mixed integer programming
to generate, at each iteration, a violated inequality (a cut) which maximizes the cut violation
αx∗ − α0 at x∗. For any detail, see [1] and the references therein.

In contrast to the fact that the generation of a cut with a strictly positive violation is a
necessary condition for the convergence of the method, the generation of a maximally violated
cut is not mandatory, although commonly considered the standard procedure.

In our view, a simple analogy with the simplex method suffices to suggest that alternatives
to the cut violation are worth being explored. Assume that we are solving PLP tightened with
all the valid inequalities in C, namely, P ∗LP := max{cx : Ax ≤ b, αx ≤ α0 ∀(α, α0) ∈ C, x ∈ Qn}
with the dual simplex method. Also assume that, at the current iteration, all the inequalities
αx ≤ α0 are still violated (that is, the corresponding slack variables, when bringing the problem
to standard form, are strictly negative). Adding a maximally violated cutting plane among
those in C and reoptimizing thus amounts to pivoting on a row with the most negative slack or,
looking at the dual, pivoting on the column with most negative reduced cost. Computational
experience suggests that such pivoting rule, which sometimes goes by the name of Dantzig’s
rule, is in practice a poor choice, performing as poorly as pivoting on a random column with
a negative reduced cost [2].

∗Work partially funded by the Google Focused Grant Program on Mathematical Optimization and Combina-
torial Optimization in Europe – “Robust Mixed Integer Programming”.

59

Inspiration for alternatives to the cut violation can be drawn from the best pivoting rules
usually adopted in the simplex method. Many of such rules, with steepest edge pricing [3]
as a prominent example, aim at providing a better approximation of the actual variation in
objective function value that is obtained after pivoting on a certain row or column, which is
in general poorly approximated by the reduced cost1. Differently from the case of the simplex
method, where the whole formulation is readily available and, in principle, the “best” pivot can
be found (even though inefficiently) by tentatively performing all the feasible pivots and then
backtracking and choosing the best one, in a cutting plane setting the cuts are not available a
priori and hence such a naive approach is not applicable.

2 Bound-optimal cutting planes

Differently from the standard separation problem, in this paper we address the following:

Definition 2.1. [Bound-optimal cutting plane generation] Given P := max{cx : Ax ≤ b, x ∈
Zp ×Qn−p}, where Ax ≤ b contains lower and upper bounds for all the components of x, and
its continuous relaxation PLP = max{cx : Ax ≤ b, x ∈ Qn} with optimal value zLP , find a
cutting plane αx ≤ α0 with (α, α0) ∈ C which maximizes the bound variation zLP − z′LP , where
z′LP is the optimal value of P ′LP := max{cx : Ax ≤ b, αx ≤ α0, x ∈ Qn}.

We show the following:

Theorem 2.2. Assuming that C can be represented as a Mixed Integer polyhedron, a bound-
optimal cutting plane as in Definition 2.1 is found by solving the following Quadratically Con-
strained Mixed Integer Program:

min
∑n

j=1 cjxj (1)

s.t.
∑n

j=1 aijxj ≤ bi ∀i = 1, . . . ,m (2)∑n
j=1 αjxj ≤ α0 (3)

xj ≥ 0 ∀j = 1, . . . , n (4)∑m
i=1 aijyi + αjym+1 ≥ cj ∀j = 1, . . . , n (5)

yi ≥ 0 ∀i = 1, . . . ,m+ 1 (6)∑n
j=1 cjxj =

∑m
i=1 biyi + α0ym+1 (7)

(α, α0) ∈ C. (8)

Proof. By (2)–(4), P ′LP is rewritten as a parametric LP of variable x ∈ Rn depending on the
variable coefficients of the new cut αx ≤ α0, the validity of which is imposed in (8). The
optimality of x for P ′LP is enforced by introducing the parametric dual of P ′LP of variable
y ∈ Rm+1 in (5)–(6), where ym+1 is the dual variable of the new inequality in (3), and by
imposing strong LP duality in (7). Since, for any feasible (α, α0) ∈ C, every x which is feasible
for (2)–(7) is optimal for P ′LP , a bound-optimal cut is found by minimizing the objective
function of P ′LP (rather than by maximizing it).

Problem (1)–(8), which is of polynomial size w.r.t. m and n, is nonlinear because of the
bilinear products αjxj in (3), αjym+1 in (5), and α0ym+1 in (7). Two results directly follow:

1Even though, clearly, finding the best neighboring solution within a pivoting operation has no relationship
with the actual number of pivots needed to converge to an optimal solution.

60

Corollary 2.3. If (α, α0) ∈ Zn+1 and αj , α0 are upper bounded by some M > 0 for all j =
1, . . . , n, then problem (1)-(8) can be cast as a Mixed 0-1 Integer Program of pseudopolynomial
size w.r.t. m,n,M .

Proof. It suffices to rewrite each variable αj , for all j = 1, . . . , n, and α0 as the sum of at
most M 0-1 variables, thus transforming all the bilinear products between an integer and a
continuous variable in (3), (5), (7) into the sum of M bilinear products between a binary and
a continuous variable, each of which can then be rewritten in a linear fashion by employing
the McCormick envelope, which is tight if one of the variables in the product is binary.

Corollary 2.4. If α ∈ {0, 1}n for all j = 1, . . . , n and α0 is an affine function of α, then
problem (1)–(8) can be cast as a Mixed 0-1 Integer Program of polynomial size in m,n.

Proof. If αj ∈ {0, 1} for every j = 1, . . . , n, we can directly apply the McCormick envelope
without transforming αj into the sum of 0-1 variables. If α0 =

∑n
j=1wjαj + w0 for some

w0, . . . , wn ∈ R, the product α0ym+1 in (7) becomes
∑n

j=1wjαjym+1 + w0ym+1 and we can
simply apply the envelope to each product wjαjym+1.

This second result is of practical interest, since it encompasses many families of combinatorial
cutting planes, such as stable set inequalities (where α0 = 1), cut-set inequalities (where α0 = 1
for connectivity or α0 = 2 for biconnectivity), and cover inequalities (where α0 =

∑n
j=1 αj−1).

Our bound-optimal cutting plane paradigm has two major differences w.r.t. the standard
one: 1) it does not require to reoptimize the LP relaxation, which is automatically reoptimized
each time Problem (1)–(8) is solved and 2) it does not directly involve the separation of an
infeasible solution x∗. Note that, without imposing a strictly positive cut violation w.r.t. x∗,
the method may not converge. This is the case of problems where the LP relaxation admits
an optimal face but none of the cuts in C can, by itself, cut the entire face away.

Although we do not show it here for space reasons, Problem (1)–(8) can be easily extended
so as to generate any number k of cutting planes which simultaneously yield the maximum
bound variation. The impact of adopting k > 1 is shown in the following.

3 Bound-optimal stable set inequalities

Let us consider the max clique problem for an undirected graph G = (V,E). Let S :=
S1, . . . , Sm be a collection of m stable sets containing at least all those of cardinality two.
The LP relaxation of the problem reads maxx≥0{

∑
j∈V xj :

∑
j∈Si

xj ≤ 1 ∀Si ∈ S}. The
“standard” separation problem is minα∈{0,1}n{

∑
j∈V x

∗
jαj : αi +αj ≤ 1 ∀(i, j) ∈ E}. Applying

Theorem 2.2 and Corollary 2.4, a bound-optimal stable set inequality is obtained as a solution
to the following Mixed 0-1 IP:

min
∑

j∈V xj (9)

s.t.
∑

j∈Si
xj ≤ 1 ∀i = 1, . . . ,m (10)∑

j∈V αjxj ≤ 1 (11)∑m
i=1:Si3j yi + αjym+1 ≥ 1 ∀j ∈ V (12)∑
j∈V xj =

∑m
i=1 yi + ym+1 (13)

αi + αj ≤ 1 ∀(i, j) ∈ E (14)

αj ∈ {0, 1}n, xj ≥ 0 ∀j = 1, . . . , n (15)

yi ≥ 0 ∀i = 1, . . . ,m+ 1, (16)

61

which is linearized, for each j = 1, . . . , n, by substituting two new variables zj , hj ≥ 0 for,
respectively, αjxj and αjym+1, and then introducing the McCormick envelope constraints:
zj ≤ xj − αj + 1, zj ≥ xj + αj − 1, zj ≤ αj , hj ≤ ym+1 − αj + 1, hj ≥ ym+1 + αj − 1, hj ≤ αj .

4 Preliminary computational experiments

We illustrate preliminary results obtained on two of the max clique instances used in [1]:
c-fat200-1 and c-fat200-5. We generate bound-optimal stable set inequalities by solv-
ing (1)–(8) and its extension (which we only mentioned) which allows to simultaneously gener-
ate any number k of cuts, adopting k = 1, 2, 3, 4. We compare to the separation of maximally
violated cuts, modified so as to guarantee that the cuts are undominated (U-Std) and to the
generation of coordinated cutting planes (Coord), which is proposed in [1]. CPLEX 12.2 is
used.

The promise of bound-optimal cuts is shown in the following charts, illustrating for
c-fat200-1 (resp. c-fat200-5) the evolution of the bound over the first 20 (resp. 60) cutting
plane iterations. Indeed, with bound optimal cuts and k = 1, we always match the bounds
obtained with Coord and, for a larger k, the bounds are much tighter.

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20

B
o

u
n

d

Iterations

k=1
k=2
k=3
k=4

U-Std
Coord

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70

B
o

u
n

d

Iterations

k=1
k=2
k=3
k=4

U-Std
Coord

This comes at a price, since the time required to generate a bound-optimal cut can be very
large. Nevertheless, a more efficient cut generation might be obtained by adopting better
formulations for the set C, such as, for the max clique case, by adding some nontrivial clique
inequalities.

Note that, due to the way it is defined, the bound-optimal cutting plane method tends to stall
with a bound slightly larger than the best one. Nevertheless, since our method provides much
tight bounds within the very first iterations, a possible way to overcome the convergence issue
is that of switching to a standard cutting plane separation when the bound stops improving.

References

[1] E. Amaldi, S. Coniglio, and S. Gualandi. Coordinated cutting plane generation via multi-
objective separation. Mathematical Programming, pages 1–24, 2012.

[2] R. Bixby. Advanced Mixed Integer Programming: Solving MIPs in practice. In Combina-
torial Optimization at Work 2, Berlin, 2009.

[3] J.J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear programming.
Mathematical programming, 57(1):341–374, 1992.

62

On specifying boundary conditions for the
graph sandwich problem∗

Fernanda Couto1, Luerbio Faria2, Sulamita Klein1,3, Loana T.
Nogueira4, and Fábio Protti4

1COPPE/PESC, Universidade Federal do Rio de Janeiro, Brazil
2Instituto de Matemática e Estat́ıstica, Universidade do Estado do Rio de Janeiro, Brazil

3Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil
4Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

Abstract. The original graph sandwich problem for a property Π, as defined
by Golumbic, Kaplan, and Shamir, can be stated as follows: given two graphs
G1 = (V,E1) and G2 = (V,E2), is there a graph G = (V,E) such that E1 ⊆
E ⊆ E2 and G satisfies Π (or belongs to a class Π) ? The graph G is called a
sandwich graph. The importance of the graph sandwich problem lies in the fact
that it naturally generalizes the recognition problem of graphs with property Π,
by setting G1 = G2. Our proposal is to introduce a generalization of the original
graph sandwich problem, by specifying special properties Π1,Π2 for graphs G1, G2,
respectively. In this new approach, each type of graph sandwich problem can
be represented by a triple (Π1,Π,Π2)-sp, whose meaning is precisely “seek for a
sandwich graph G satisfying Π, when it is known in advance that Gi satisfies Πi,
i = 1, 2”. Such a generalization is called graph sandwich problem with boundary
conditions. When Gi is not required to satisfy any special property, let us denote
Πi by ∗. One of the motivations for introducing boundary conditions is to develop
a more refined complexity analysis of a NP-complete (∗,Π, ∗)-sp problem, since its
complexity status can change to polynomially solvable by suitably selecting Π1,Π2.
For instance, let (k, `) denote the class of (k, `)-graphs (graphs whose vertex set
can be partitioned into k stable sets and ` cliques). It is known that (∗, (k, `), ∗)-sp
is NP-complete for k+ ` ≥ 3 and polynomial otherwise. In this work we prove that
this problem can be solved in polynomial time when choosing convenient boundary
conditions. We prove that (chordal, (k, `), chordal)-sp, (∗, (2, 1), triangle-
free)-sp, and (∗, (2, 1), bounded degree)-sp can be solved in polynomial time.
Keywords: boundary conditions, (k, `)-graphs, sandwich problem

1 Introduction

Golumbic, Kaplan and Shamir introduced in [12] the graph sandwich problem for prop-
erty Π in its original form, as follows:

∗This work is partially supported by CNPQ and FAPERJ, Brazilian research agencies. List of emails:
nandavdc@gmail.com, luerbio@cos.ufrj.br, sula@cos.ufrj.br, loana@ic.uff.br, fabio@ic.uff.br

63

Instance: G1 = (V,E1) and G2 = (V,E2), such that E1 ⊆ E2.
Question: Is there a graph G = (V,E) such that E1 ⊆ E ⊆ E2 and G satisfies Π?

We call E1 the set of mandatory edges, E2 \E1 the set of optional edges, and E(G2) the set
of forbidden edges. Hence, any sandwich graph G = (V,E) for the pair G1, G2 must contain
all mandatory edges and no forbidden edges. The recognition problem for a class of graphs C is
equivalent to a particular graph sandwich problem where E1 = E2. Graph sandwich problems
have drawn much attention because they naturally generalize graph recognition problems and
have many applications [6, 7, 11, 15]. After studying many of them, we started questioning
why not choosing special properties for graphs G1 and G2, since we can refine the complexity
analysis of a sandwich problem by introducing such properties. Thus, we propose a generalized
version of sandwich problems, that we call sandwich problems with boundary conditions. In
this new approach, each type of problem is denoted by a triple (Π1, Π ,Π2)-sp, where input
graphs G1 and G2 satisfy properties Π1 and Π2, respectively. We formalize it as follows:

graph sandwich problem for property Π with boundary conditions-(Π1,Π,Π2)-sp
Instance: Gi = (V,Ei) satisfying Πi, i = 1, 2, such that E1 ⊆ E2.
Question: Is there a graph G = (V,E) such that E1 ⊆ E ⊆ E2 and G satisfies Π?

If Gi is not required to satisfy any special property, we denote Πi by ∗. Golumbic et
al. [12] remark that (∗,Π, ∗)-sp is interesting when property Π is polynomially recognizable.
In contrast, we remark that (Π1,Π,Π2)-sp has meaning when (∗,Π, ∗)-sp is NP-complete, since
(Π1,Π,Π2)-sp is not more difficult than (∗,Π, ∗)-sp.

We focus on a particular property Π related to the (k, `)-partition problem [8, 9]. A graph
G is (k, `) if V (G) can be partitioned into k stable sets and ` cliques (some of them may be
empty). In [1], the problem of recognizing (k, `)-graphs was shown to be NP-complete if k ≥ 3
or ` ≥ 3, and polynomially solvable otherwise. In [1–3, 9] polynomial-time algorithms are
described for deciding if a graph admits a (2, 1)- or (2, 2)-partition. The problem (∗, (k, `), ∗)-
sp, for all k + ` ≥ 3, was shown to be NP-complete in [5] and polynomial if k + l ≤ 2 [12].
In Section 2 we prove that this problem can be solved in polynomial time when choosing
convenient boundary conditions. We study three problems: (chordal, (k, `), chordal)-sp,
(∗, (2, 1), triangle-free)-sp, and (∗, (2, 1), bounded degree)-sp.

2 Three Sandwich Problems with Boundary Conditions

Theorem 2.1. Let k, ` ≥ 0 be fixed integers. (chordal, (k, `), chordal)-sp is in P.

The proof of Theorem 2.1 is based on Algorithm 1, which runs in O(mn`) time.

Algorithm 1: Algorithm for solving (chordal, (k, `), chordal)-sp

Let C be the collection of maximal cliques of G2 ;
for each subcollection {C1, C2, · · · , C`} of C do

let C ′ = V (C1) ∪ V (C2) ∪ · · · ∪ V (C`) ;
if G1\C ′ is k-colorable then

return G = (V,E1 ∪ E(C1) ∪ · · · ∪ E(C`))

return there is no (k, `)-graph G such that E1 ⊆ E(G) ⊆ E2

64

Theorem 2.2. (∗, (2,1), triangle-free)-sp is in P.

Algorithm 2 solves (∗, (2,1), triangle-free)-sp and runs in O((n+m)m) time.

Algorithm 2: Algorithm for solving (∗, (2, 1), triangle-free)-sp.

begin
for each (u, v) ∈ E2\E1 do

V ′ := V \{u, v} ;
G′ = G1[V ′] ;
if G′ is bipartite then

return G = (V,E1 ∪ {(u, v)})
return there is no (2, 1)-graph G such that E1 ⊆ E(G) ⊆ E2

Finally, we state the following result:

Theorem 2.3. (∗ , (2,1), bounded degree)-sp is in P.

Algorithm 3 solves (∗ , (2,1), bounded degree)-sp by listing all maximal cliques of G2

and testing, for each maximal clique, if the deletion of its vertices in G1 yields a bipartite
graph. It runs in O(mnk+1) time, where k = ∆(G2).

Algorithm 3: Algorithm for solving (∗,(2,1), bounded degree)-sp

begin
let C = {C1, · · · , Cl} be the collection of maximal cliques of G2;
for each Ci ∈ C do

if G1\V (Ci) is bipartite then
return G = (V,E1 ∪ E(Ci))

return there is no (2, 1)-sandwich graph G = (V,E) such that E1 ⊆ E ⊆ E2

3 Conclusions

We observe that (k, `)−chordal is a polynomially recognizable property [10,13,14]. Recently
the versions (∗, chordal-(2, 1), ∗)-sp and (∗, strongly chordal-(2, 1), ∗)-sp have been
proved to be NP-complete [4]. As future works we are trying to choose properties Π1 and
Π2 to analyze the complexity of (Π1, chordal-(k, `),Π2)-sp and (Π1, strongly chordal-
(k, `),Π2)-sp. Table 1 summarizes results of this paper for k = 2, ` = 1, together with other
results and open problems.

References

[1] A. Brandstadt. Partitions of graphs into one or two independent sets and cliques. Discrete Math-
ematics, 152, (1996) pp. 47–54.

[2] A. Brandstadt and V. B. Le and T. Szymczak. The complexity of some problems related to Graph
3-colorability. Discrete Applied Mathematics, 89, (1998) pp. 59–73.

[3] A. Brandstadt. Corrigendum. Discrete Mathematics, 186, (2005) p. 295.

65

(Π1, (2, 1),Π2)-sc

Π1\Π2 chordal triangle-free bounded degree k ∗
chordal O(mn) O(m2) O(mnk+1) ?

triangle-free O(mn) O(m2) O(mnk+1) ?

bounded degree k O(mn) O(m2) O(mnk+1) ?

∗ O(mn) O(m2) O(mnk+1) NP-c [5]

Table 1: Complexity results and open problems for (Π1, (2, 1),Π2)-sp, where properties Π1, Π2

are in {chordal, triangle-free, bounded degree k , ∗}.

[4] F.Couto. Problemas Sandúıche para Grafos-(2,1) com Condições de Contorno (in Portuguese).
M.Sc. thesis, (2012).

[5] S. Dantas and C.M. de Figueiredo and L. Faria. On decision and optimization (k,l)-graph sandwich
problems. Discrete Applied Mathematics, 143, (2004), pp. 155–165.

[6] S. Dantas and S. Klein and C. P. de Mello and A. Morgana. The Graph Sandwich Problem for
P4-sparse graphs. Discrete Mathematics. 309, (2009) pp. 557–561 full paper Ars Comb. 88, (2008)
pp. 3664 – 3673.

[7] S. Dantas and R.B. Teixeira and C.M.H. Figueiredo. The polynomial dichotomy for three nonempty
part sandwich problems. Discrete Applied Mathematics , (2010) pp. 1286–1304.

[8] T. Feder and P. Hell and S. Klein and R. Motwani. Complexity of graph partition problems.
Proceedings of the thirty-first annual ACM symposium on Theory of computing, (1999), pp. 464–
472.

[9] T. Feder and P. Hell and S. Klein and R. Motwani. List partitions. SIAM Journal Discrete
Mathematics, 16, (2003), pp. 449–478.

[10] T. Feder and P. Hell and S. Klein and L. T. Nogueira and F. Protti. List matrix partitions of
chordal graphs. Theoretical Computer Science, 349, (2005), pp. 52–66.

[11] C.M.F. Figueiredo and L. Faria and S. Klein and R. Sritharan. On the complexity of the sandwich
problems for strongly chordal graphs and chordal bipartite graphs. Theoretical Computer Science,
381, (2007) pp. 57–67.

[12] M.C. Golumbic and H. Kaplan and R. Shamir. Graph sandwich problems. Journal of Algorithms,
19, (1995) pp 449–473.

[13] P. Hell and S. Klein and L. T. Nogueira and F. Protti. Partitioning chordal graphs into independent
sets and cliques. Discrete Applied Mathematics, 141, (2004), pp. 185–194.

[14] P. Hell and S. Klein and L. T. Nogueira and F. Protti. Packing r-cliques in weighted chordal
graphs. Annals of OR, 138, (2005), pp. 179–187.

[15] R. Sritharan. Chordal bipartite completion of colored graphs. Discrete Mathematics, 308, (2008),
pp. 2581–2588.

66

A tight bound on the number of minimal
dominating sets in split graph

Jean-François Couturier1 and Mathieu Liedloff2

1LITA, Université de Lorraine, 57045 Metz Cedex 01, France, couturier@univ-metz.fr
2LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France, mathieu.liedloff@univ-orleans.fr

Given a graph G = (V,E), a subset D ⊆ V is a dominating set if each vertex of
V \ D has at least one neighbor in D. The set D is minimal if no proper subset
of D is a dominating set. It has been proved that any n-vertex graph has at most
1.7159n such minimal dominating sets whereas a lower bound of 1.5705n is known.
Several graph classes have been studied recently and for few of them the proved
upper bound match the lower bound.

In this paper we prove an upper bound of O(1.4423n) for split graphs. This result
is tight and settles a conjecture given in [1]. Since our result is algorithmically
based, all minimal dominating sets of a split graphs can be enumerated within the
same bound.

1 Introduction

One of the most famous results about independent sets is due to Moon and Moser [8]; it states
that the maximum number of maximal independent sets in any n-vertices graph is 3n/3. Such
a bound is the key-point of (the running-time analysis of) several algorithms, like the coloring
algorithm by Lawler [7].

Others graphs properties has been also recently considered, like minimal feedback vertex
sets, bicliques, potential maximal cliques, dominating sets [2, 6, 5, 3, 1] with algorithmic
consequences for some well-known problems. Regarding the dominating set property, Fomin
et al. [3] have shown that the maximum number of minimal dominating set at most 1.7159n

and at least 1.5705n. Recently, Couturier et al. [1] have considered several graph classes
(chordal, cobipartite, split, proper interval, cographs, trivially perfect, threshold and chain
graphs) and established corresponding lower bounds and upper bounds on their maximum
number of minimal dominating sets. For some of these graph classes, a tight bound was
obtained (i.e. the lower bound matches the upper bound), whereas a gap exists for others. In
particular for split graphs, a 3n/3 ≈ 1.4422n lower bound and 1.4656n upper bound have been
proved, and it is conjectured (see [1]) that the upper bound should be 3n/3. In this paper we
settle the conjecture and show the 3n/3 upper bound (up to a polynomial factor).

2 Preliminaries

Given a graph G = (V,E), a set D ⊆ V is called a dominating set if each vertex of V \D has
at least one neighbor in D. The set D is called minimal dominating set (mds) if there is no

67

D′ ⊂ D such that D′ is a dominating set. A vertex x ∈ V \D is called a private neighbor of a
vertex v ∈ D if N [x] ∩D = {v}. If D is a mds then any v ∈ D has a private neighbor.

A graph G = (V,E) is a split graphs if its vertex set can be partitioned into a clique C and
an independent set I. Given a vertex v ∈ C we denote by dI(v) the number of neighbors of v
in I. Given a set X ⊆ V , we let NX(v) = N(v) ∩X.

3 An algorithm to enumerate mds in split graphs

Throughout this section we assume G = (V,E) to be a split graph, given together with a
partition (C, I) of its vertex set into a clique C and an independent set I.

To enumerate all mds of a given split graph G = (V,E) we design a branching algorithm. Its
execution can be viewed as a search tree, whose leaves correspond to the minimal dominating
sets of G. Thus, by upper bounding the maximum number of leaves of this search tree, we
obtain an upper bound on the maximum number of mds. It is standard to establish linear
recurrences to analyze the running-time of branching algorithms, and we refer the reader to
the book by Fomin and Kratsch [4] for further details. Typically, we define recurrences of type
T (n) =

∑k
i=1 T (n − ri), where ri is the number of vertex removed before the corresponding

recursive call. We name (r1, r2, . . . , rk) the branching vector of this recurrence. Finally, the
running-time O∗(αn) is obtained by taking αn as the worse-case solution over all the recur-
rences. We are now ready to describe our algorithm. Note that it is a collection of (sub-)cases
and we assume that a case is applied only if no other case appearing before can be applied.
Suppose D to be the current minimum dominating set that is building and let v be a vertex
of C with a maximum number of neighbor in I.

Description of the algorithm

Case 1. If dI(v) ≥ 3 then we branch into :

• “v ∈ D”. At least 4 vertices (v and NI(v)) are deleted.

• “v /∈ D”. Whenever a neighbor of v will be dominated, vertex v will be dominated too; so we
can safely delete v.

This gives a (4, 1) branching vector, whose corresponding solution is O(1.3803n).

Case 2. If dI(v) = 2 then we let NI(v) = {x, y}. Wlog, we assume d(x) ≤ d(y).

Case 2.1. If d(x) = 1 then v is its only neighbor and there are two possibilities to dominate x:

• “x ∈ D”. By minimality of D, vertex v cannot be in the dominating set and x and v are
removed.

• “x /∈ D”. Thus to dominate x we need to add v to D. Vertex y is removed as it is also
dominated by v, and by minimality of D cannot belongs to D (recall that C is a clique
and v ∈ C).

This gives a (2, 3) branching vector and the corresponding solution is O(1.3248n).

Case 2.2. If d(x) = 2 then we call v′ the other neighbour of x.

Case 2.2.1. If d(v′)I = 1 then x is the only neighbour of v′ in I, and there is three
possibilities to dominate x:

• “v ∈ D”. Because x is the only neighbour of v′ in I, there is no more minimal
dominating set containing v′. So at least 4 vertices (v, {x, y} ⊆ NI(v) and v′) are
deleted.

• “v′ ∈ D”. If v is not in the dominating set, we can use v′ to dominate x. We delete
x, v and v′. Note that the case “v ∈ D” was previously considered so we know that
v cannot be longer added to D (and v is dominated by v′).

68

• “x ∈ D”. If neither v or v′ are in the dominating set, we have to add x to D. Again,
we delete v, v′ and x.

This gives a (4, 3, 3) branching vector and its solution is O(1.3954n).

Case 2.2.2 If d(v′)I ≥ 2 and y /∈ N(v′) then dI(v′) = 2 as dI(v) is maximum over all
vertices v ∈ I. Let us call z the other neighbor of v′ in I.

• “v ∈ D and x is its private neighbor”. We can delete v, v′ and NI(v), i.e. at least 4
vertices.

• “v ∈ D and y is its private neighbor”. As x is not the private neighbor of v, it follows
that v′ belongs to D. Thus, at least 6 vertices are deleted (v, x, y, v′, z and N(y)).

• “v /∈ D, v′ ∈ D”. In this case, x and z are dominated by v′ and can be deleted, as
well as v and v′.

• “x ∈ D”. As neither v and v′ are in D, x is added to D and N(x) is removed.

This gives a recurrence whose branching vector is no worse that (4, 6, 4, 3) branching
vector, giving O(1.4064n).

Case 2.2.3. If dI(v′) ≥ 2 and y ∈ N(v′) then N(v′) = N(v).

• “v ∈ D”. By minimality, v′ can never be added to D. We delete v, v′, x and y.

• “v′ ∈ D”. This branch is symmetric to the previous one.

• “x ∈ D”. As v and v′ are not in D, x belongs to D and N [x] is removed.

The corresponding branching vector is (4, 4, 3). That is O(1.3533n).

Case 2.3. If d(x) = 3 then we call v, v′1 and v′2 its neighbors. Wlog, assume that d(v′1) ≤ d(v′2).

Case 2.3.1. If y /∈ N(v′1) ∪N(v′2) then we branch in the following ways :

• “v ∈ D and x is its private neighbor”. We delete 5 vertices: v, NI(v) and N(x).

• “v ∈ D, y is its private neighbor and v′1 ∈ D”. If dI(v′1) = 1 this branch is skipped
as it is not minimal to add both v′1 and v to D. Thus we assume that dI(v′1) ≥ 2.
In that case, we delete v, v′1, x, y, N(y) (as v is its private neighbor) and NI(v′1);
i.e. at least 7 vertices.

• v ∈ D, y is its private neighbor and v′2 ∈ D”. Due to the previous branch, v′1 /∈ D.
Again, in this branch we can assume that dI(v′2) ≥ 2 otherwise we skip it. So we
delete v, v′1, v′2, x, y, N(y), and NI(v′2), i.e. at least 8 vertices.

• “v /∈ D”. In this case we only delete v.

This gives a recurrence whose branching vector is no worse than (5, 7, 8, 1), which gives
O(1.4331n).

Case 2.3.2. If y ∈ N(v′1)∪N(v′2) then we branch in the following ways. Note that at least
one branch is skipped.

• “v ∈ D and x is its private neighbor”. We delete 5 vertices : v, NI(v) and N(x).

• “v ∈ D, y is its private neighbor and v′i ∈ D”. If y ∈ N(v′1) ∩ N(v′2) this branch is
skipped as y cannot be a private neighbor of v; otherwise let i such that y /∈ N(v′i).
If dI(v′i) = 1 this branch is skipped as it is not minimal to add both v′1 and v to D;
otherwise we delete v, v′i, x, y, N(y) (as v is its private neighbor) and NI(v′i); i.e. at
least 7 vertices.

• “v /∈ D”. In this case we only delete v.

This gives a recurrence whose branching vector is no worse than (5, 7, 1), or (5, 1) in
the case that y ∈ N(v′1) ∩N(v′2). This later case gives O(1.3248n).

Case 2.4. If d(x) ≥ 4 then we do the following branching:

• “v ∈ D and x is its private neighbor”. So we delete v, x, y and N(x). At least 6 vertices
removed.

69

• “v ∈ D and y is its private neighbor”. So we delete v, x, y and N(y). Again, at least 6
vertices are removed.

• “v /∈ D”. We only delete v.

This gives us a (6, 6, 1) branching vector, corresponding to O(1.3881n). Observe that the
mds where x and y are only dominated by v are generated by both the first two branchings,
so some minimal dominating sets can be output more than once by our algorithm.

Case 3. As all the previous cases can be no longer applied, it results that for each vertex v ∈ C,
d(v) ≤ 1. Let’s take a vertex x ∈ I of maximum degree and denote by v1, . . . , vd(x) its neighbors.
Observe that as soon as x is dominated, all its neighbors can be immediately removed. This
suggests the following branching :

• “x ∈ D” and N [x] is removed.

• “x /∈ D and vi ∈ D” for 1 ≤ i ≤ d(x). We have d(x) possibilities to pick a neighbour of x and
to add it to D. In each case, we delete N [x].

This gives the (d(x) + 1, d(x) + 1, . . . , d(x) + 1) branching vector of length (dx) + 1 and its worst
case solution is obtained when d(x) = 2 and thus O(3n/3) = O(1.4423n).

Case 4. Finally if the graph contains no more edges then all remaining vertices of I are added to D.
If D ∩C is not empty then the remaining vertices of C are removed, otherwise for each vertex v
of C we add it to D and we return D ∪ {v}.

End of the Algorithm

The previous algorithm and its running-time analysis show the Theorem :

Theorem 3.1. The minimum dominating sets of a split graph can be enumerated in time
O(poly(n) · 3n/3) = O(1.4423n).

References

[1] J.F. Couturier, P. Heggernes, P. van ’t Hof, and D. Kratsch. Minimal Dominating Sets in
Graph Classes: Combinatorial Bounds and Enumeration. Proceedings of SOFSEM 2012,
pp. 202-213 (2012).

[2] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the minimum feedback vertex
set problem: Exact and enumeration algorithms. Algorithmica 52(2): 293-307 (2008).

[3] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov. Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications. ACM
Trans. Algorithms 5(1): (2008).

[4] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, Texts in Theoretical
Computer Science (2010).

[5] F. V. Fomin and Y. Villanger. Finding induced subgraphs via minimal triangulations.
Proceedings of STACS 2010, pp. 383-394 (2010).

[6] S. Gaspers, D. Kratsch, and M. Liedloff. On Independent Sets and Bicliques in Graphs.
Algorithmica 62(3-4): 637-658 (2012).

[7] E. L. Lawler. A note on the complexity of the chromatic number problem. Inform. Proc.
Lett. 5(3): 66-67 (1976).

[8] J. W. Moon and L. Moser. On cliques in graphs. Israel J. Math. 3: 23-28 (1965).

70

A Quantization Framework for Smoothed
Analysis on Euclidean Optimization

Problems

Radu Curticapean1 and Marvin Künnemann1,2

1Universität des Saarlandes, Saarbrücken, Germany
2Max-Planck-Institut für Informatik, Saarbrücken, Germany

Smoothed analysis has been introduced by Spielman and Teng (2004) to analyze
the performance of algorithms on real-world instances, providing a more realistic
view than average-case or even worst-case analysis. Typical performance measures
that can be analyzed within this framework include running time and approxima-
tion ratio.

Recent results (Bläser et al., 2012) give an optimistic view on the tractability of
some Euclidean optimizations problems by employing the paradigm of smoothed
analysis. In particular, this paradigm proves useful for designing and analyzing
asymptotically optimal approximation algorithms. We extend this view by provid-
ing a general framework for designing fast algorithms whose approximation per-
formance converges to optimality if a sufficiently large perturbation of the input
is assumed. Applications of our framework include approximation algorithms for
maximum Euclidean matching and TSP, bin packing and k-means clustering.

1 Smoothed Analysis

Smoothed Analysis has been introduced by Spielman and Teng [8] to give a theoretical founda-
tion for analyzing the practical performance of algorithms. In particular, this analysis paradigm
helps to provide an explanation why the simplex method is observed to run fast in practice
despite its exponential worst-case running time.

Central to smoothed analysis is the concept of an adversarial decision merged with ran-
domization. This follows the reasoning that even if hard instances exist, they are typically
isolated, specifically constructed and hence unlikely to occur in practice. But in contrast to
average-case analysis, for which the probability distribution of the input instances is assumed
to be known, smoothed analysis lets an adversary choose worst-case distributions of bounded
“power”. These distributions are unknown to the analyzed algorithm.

We call a problem smoothed tractable if it admits a linear-time algorithm with an approxi-
mation ratio that can be bounded by 1 − o(1) with high probability over the perturbation of
the input. Assuming perturbed input is especially plausible in a Euclidean setting in which
the data may result from physical measurements, e.g., from locating a position on a map with
an inherent inaccuracy.

71

A widely-used and very general perturbation model is the one-step model, which has been
successfully applied for a number of problems, see, e.g., [1, 2, 3, 5]. In this model, an adversary
chooses probability densities according to which the input instance is drawn. To prevent
the adversary from modeling a worst-case instance too closely, we impose restrictions on the
density functions, using a parameter φ. Roughly speaking, for large φ, we expect the algorithm
to perform almost as bad as on worst-case instances. Likewise, choosing φ as small as possible
requires the adversary to choose the uniform distribution on the input space, which corresponds
to an average-case analysis. Thus, the adversarial power φ serves as an interpolation parameter
between worst case and average case.

Formally, given a set of feasible distributions F depending on φ and a performance mea-
sure t, we define the smoothed performance of an algorithm under the perturbation model F
as maxf1,...,fn∈F E(X1,...,Xn)∼(f1,...,fn)[t(X1, . . . , Xn)]. In this work, we will be concerned with
analyzing both the smoothed approximation ratio and bounds on the approximation ratio that
hold with high probability over the perturbations.

This work complements the analysis of the smoothed performance of partitioning heuristics
for Euclidean minimization problems previously conducted by Bläser et al. [2]. Their frame-
work applies to so-called smooth and near-additive functionals and analyzes algorithms that
patch local solutions to a solution on the whole instance. We establish an additional framework
for smoothed analysis on a general class of Euclidean functionals that is disjoint to the smooth
and near-additive functionals. This class contains optimization problems whose objective val-
ues are sufficiently large to compensate for rounding errors. In particular, we consider the
maximization counterparts of two problems studied in [2], Euclidean matching and TSP.

Since smoothed analysis incorporates average-case analysis, we generalize average-case anal-
ysis results for Euclidean maximum matching and TSP [4] as well as for bin packing [7].
However, for bin packing, Karger and Onak [6] have already provided a linear-time algorithm
that is asymptotically optimal on instances smoothed with any constant φ, which we extend
slightly. To the best of our knowledge, this is the only problem that fits into our framework
and has already been analyzed under perturbation.

2 Framework

Our framework builds on the notion of quantizable functionals. These are functionals that
admit fast approximation schemes on perturbed instances using general rounding strategies.
The idea is to round an instance of n points to a quantized instance of ` � n points, each
equipped with a multiplicity. This quantized input has a smaller problem size, which allows to
compute an approximation faster than on the original input. However, the objective function
needs to be large enough to make up for the loss due to rounding.

Definition 2.1. Let d ≥ 1 and F be a family of probability distributions [0, 1]d → R≥0. Let
t, R : N → R and Q ∈ R. We say that a Euclidean functional F : ([0, 1]d)∗ → R≥0 is
t-time (R,Q)-quantizable with respect to F , if there is a quantization algorithm A and an
approximation functional g : ([0, 1]d×N)∗ → R with the following properties. For any function
` satisfying ` ∈ ω(1) and ` ∈ o(n),

1. The quantization algorithm A maps a collection of points X = (X1, . . . , Xn) ∈ [0, 1]dn to
a multiset A(X) = X ′ = ((X ′1, n1), . . . , (X

′
`, n`)), the quantized input, with X ′i ∈ [0, 1]d

in time O(n).

72

2. The approximation functional g is computable in time t(`) and, for any f ∈ Fn, fulfills
PrX∼f [|F (X)− g(A(X))| ≤ nR(`)] ∈ 1− o(1).

3. For any f ∈ Fn, we have Prx∼f [F (X) ≥ nQ] ∈ 1− o(1).

Quantizable functionals induce natural approximation algorithms on smoothed instances.
We can thus restrict our attention to finding criteria that make a functional quantizable.

Theorem 2.2. Let F be a family of probability distributions and F be t(`)-time (R(`), Q)-
quantizable with respect to F . Then for every ` with ` ∈ ω(1) and ` ∈ o(n), there is an
approximation algorithm ALG with the following property. For every f ∈ Fn, the approxima-
tion ALG(X) on the instance X drawn from f is (1− R(`)

Q)-close to F (X) with high probability.
The approximation can be computed in time O(n+ t(`)).

For all problems considered here, we also design algorithms whose expected approximation
ratio converges to optimality. A sufficient condition for F to allow for such an algorithm is
that a linear-time algorithm approximating F within a constant factor 0 < c < 1 exists.

We propose two methods to verify quantizability. The first, grid quantization, partitions the
unit-cube into ` equal-volume cells using a grid. By rounding each point to the centroid of
its corresponding cell, a high-multiplicity version of the problem is obtained that typically has
an objective value close to the original value. Using algorithms that run fast in this compact
representation, quantizability can typically be established immediately. Applications of this
quantization procedure include Euclidean maximum matching and TSP as well as bin packing.

If no fast algorithm for the high-multiplicity version is known, balanced quantization might
be applied. This method determines a number `′ ≈ ` of cells C1, . . . , C`′ with three properties:
(1) each cell contains exactly the same number of points, (2) the diameter of each cell converges
to zero for n tending to infinity and (3) all but a sublinear number of points are covered by
the cells. By compressing the original instance to the centroids of the cells C1, . . . , C`′ , a much
smaller instance is obtained whose objective value (or optimal solution of the optimization
problem at hand) can, for certain functionals, be transformed to a close approximation of the
optimal solution of the original instance. This approach enables an approximation of k-means
clustering and can additionally be used to improve the quantization of Euclidean maximum
matching and TSP for higher dimensions (d ≥ 3).

3 Results

Our findings are summarized in Table 1. We obtain fast and simple approximation algorithms
on sufficiently smoothed inputs for the following problems: The maximum Euclidean matching
problem MaxM(X), the maximum Euclidean Traveling Salesman problem MaxTSP(X), the
k-means clustering problem KMeans(X; k) where k denotes the number of desired clusters,
and the d-dimensional bin packing problem BPd(X). The approximation ratio converges to
one with high probability over the random inputs. Additionally, all of these algorithms can be
adapted to additionally yield asymptotically optimal expected approximation ratios.

Our results extend the rather optimistic view of smoothed tractability. Due to its generality
and the examples provided here, the framework suggests that combining these two relax-
ations of tractability (asymptotically optimal approximation and perturbation of the input)
may enable an analysis of general rounding techniques for hard optimization problems. The
perturbation assumption is especially plausible in the problem settings we consider here.

73

problem running time restriction on adversary power

MaxM(X) O(n) φ ∈ o(4
√
n) or φ ∈ o(n 1

2
d

d+2
−ε)

MaxTSP(X) O(n) φ ∈ o(4
√
n) or φ ∈ o(n 1

2
d

d+2
−ε)

KMeans(X; k) O(n) kφ ∈ o(n 1
2

1
kd+1

d
d+1)

BP1(X) O(n log n) φ ∈ o(n1−ε)
BPd(X) O(n) φ ∈ o

(
d(d+1)

√
log log n/ log(3) n

)

Table 1: All (near) linear-time algorithms derived in our framework

Our framework complements a previous framework by Bläser et al. [2] for smooth and
near-additive Euclidean functions that is orthogonal to our approach. A smooth Euclidean
functional F on n points has, by definition, a value that is too small to compensate for the
rounding errors that our quantization methods induce. This implies that for any Euclidean
functional, at most one of both frameworks is applicable.

References

[1] R. Beier and B. Vöcking. Typical properties of winners and losers in discrete optimization.
SIAM Journal on Computing, 35(4):855–881, 2006.

[2] M. Bläser, B. Manthey, and B. V. R. Rao. Smoothed analysis of partitioning algorithms
for euclidean functionals. Algorithmica, pages 1–22, 2012.

[3] E. Boros, K. Elbassioni, M. Fouz, V. Gurvich, K. Makino, and B. Manthey. Stochastic
mean payoff games: Smoothed analysis and approximation schemes. In 38th Int. Coll. on
Automata, Languages and Programming, ICALP’11, pages 147–158. Springer, 2011.

[4] M. E. Dyer, A. M. Frieze, and C. J. H. McDiarmid. Partitioning heuristics for two geometric
maximization problems. Operations Research Letters, 3(5):267–270, 1984.

[5] M. Englert, H. Röglin, and B. Vöcking. Worst case and probabilistic analysis of the 2-opt
algorithm for the TSP: Extended abstract. In 18th Ann. ACM-SIAM Symp. on Discrete
Algorithms, SODA ’07, pages 1295–1304, Philadelphia, PA, USA, 2007. SIAM.

[6] D. Karger and K. Onak. Polynomial approximation schemes for smoothed and random in-
stances of multidimensional packing problems. In 18th Ann. ACM-SIAM Symp. on Discrete
Algorithms, SODA ’07, pages 1207–1216, Philadelphia, PA, USA, 2007. SIAM.

[7] R. M. Karp, M. Luby, and A. Marchetti-Spaccamela. A probabilistic analysis of multidi-
mensional bin packing problems. In 16th Annual ACM Symp. on Theory of Computing,
STOC ’84, pages 289–298, New York, NY, USA, 1984. ACM.

[8] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

74

Linear Time and Almost Linear Time Cases
for Minimal Elimination Orderings

Elias Dahlhaus1

1Department of Computer Science, Darmstadt University of Technology

1 Introduction

One of the major problems in computational linear algebra is that of sparse Gauss elimination.
The problem is to find a pivoting, such that the number of zero entries of the original matrix
that become nonzero entries during the elimination process is minimized. In case of symmetric
positive definite matrices, it translates to the following graph theory problem [10].

Minimum Elimination Ordering: Given a graph G = (V,E), find a superset E′ of E of min-
imum size and ordering < on V , such that the greater E′-neighbors of any vertex is
complete in G′ = (V,E′).

Note that this problem is NP-complete [13].

For this reason, one considers also the following relaxation of the problem.

Minimal Elimination Ordering: Given a graph G = (V,E), find an inclusion minimal superset
E′ of E and ordering < on V , such that the greater E′-neighbors of any vertex is complete
in G′ = (V,E′). This problem can be solved in O(nm) time [11].

The Minimal Elimination Ordering problem can be solved in O(nm) time in general [11] and
for planar graphs and for graphs of bounded degree in linear time [4, 5].

In this paper, first a simpler linear time algorithm for the minimal elimination ordering
problem for planar graphs is presented.

It is to mention that the fill-in of a minimal elimination ordering can be much larger than
the fill-in of a minimum elimination ordering. But there are heuristics, like nested dissection,
that are quite appropriate to get an ordering that is not too far from a minimum elimination
ordering. On the other hand, such an ordering needs not to be minimal. In so far, it is of
interest, to transform any nested dissection or even any vertex ordering to a minimal elimina-
tion ordering. A general apporach is in [1]. Here we are interested in linear time special cases.
We consider any edge nested dissection, i.e. a recursive partition of the vertices, such that the
number of edges joining two vertices of different sets of the partition is small. The algorithm
of 2 can be used to find a minimal elimination ordering that is faithful to the given edge nested
dissection.

Finally, we consider a vertex nested dissection, i.e. we consider a minimal vertex separator
that divides a given planar graph into two components that are of almost equal size. Vertices
in the components are considered as smaller than the vertices of the separator. The separation

75

procedure is applied recursively to the components. Bornstein, Maggs, and Miller [2] devel-
oped an algorithm that transformed the nested dissection ordering into a minimal elimination
ordering. We will show that structural properties of planar graphs allow us to implement the
algorithm of [2] in O(n log n), provided the given graph is planar.

2 Minimal Elimination Ordering

We start with a result that is also given in [5]. We call an ordering < compatible with an
ordered partition (V1, . . . , Vk) if with x ∈ Vi, y ∈ Vj , and i < j, we have x < y. We call
an ordered partition V1, . . . , Vk an approximation of a minimal elimination ordering if some
minimal elimination ordering is compatible with it.

We determine an approximation of a minimal elimination ordering as follows.

1. We determine a spanning tree T of G and a postorder enumeration v1, . . . , vn of the
vertices of T (and therefore of G).

2. The approximation (V1, . . . , Vn, Vn+1 is defined as follows.

• Vn+1 = {vn}
• For i = 1, . . . , n, Vi consists of those vertices u of G, such that u is in the neigh-

borhood of vi but not in the neighborhood of a vj with j > i, i.e. Let j(u) be the
maximum i, such that viu is an edge of G. Then Vi = {u|j(u) = i}.

Theorem 2.1. (V1, . . . , Vn+1) is an approximation of a minimal elimination ordering.

Lemma 2.2. [9] (V1, . . . , Vn+1) can be determined in O(log n) time with a linear workload by
a CREW-PRAM if a spanning tree T for G is known.

The overall complexity to get the ordered partition (V1, . . . , Vn+1 is therefore O(n + m) se-
quential time and in parallel O(n+m) processors and O(log n) time ona CRCW-PRAM (bound
to compute a spanning tree [12]).

The following result is known (see for example [11].

Lemma 2.3. Let < be an ordering on the vertices of G and let C be a connected component
of G[{w|w < v}]. Then in the chordal completion of G and <, all neighbors u of C with u ≥ v
are pairwise adjacent.

As a consequence, we get the following.

Corollary 2.4. Let C be a connected component of V1 ∪ . . . ∪ Vi−1. Then the vertices that
are neighbors of C in G′ and that do not belong to C are pairwise adjacent in any fill-in of an
ordering < that is compatible with (V1, . . . , Vn, Vn+1).

Now we assume that the given graph is planar. We consider any level Vi and any connected
component C of

⋃
j<i Vj . The neighborhood of C is, due to planarity, cyclicylly ordered, and

neighbors with respect to the cyclic ordering can be joined by edges, and the graph remains
still planar. ;oreover, these edges are fill-in edges or edges of the original graph. Due to the fact
that all vertices of Vi are neighbors of vi, the given graph restricted to Vi is outerplanar. Some
faces are filled with vertices of smaller level and have therefore to be declared to be complete.
Other faces do not contain vertices of smaller level and have to be triangulated. So we get a
chordal extension of Vi that is representable in linear space and computable in linear time. To
get the final refinement of Vi, we make use of the cyclic ordering of the neighborhood of any
connected component of Vi in levels greater than Vi.

76

3 Transforming an Edge Nested Dissection into a Minimal
Elimination Ordering

An edge nested dissection is done as follows.

1. We partition the vertices of the given graph into two almost equal sized components,
such that the number of edges between the two components is small.

2. We recursively apply this procedure, for each of these components.

Vertices that are incident to edges between the components are considered as larger than
vertices that are only adjacent to one of the components.

For our considerations, it is only relevant that we have a system of connected subsets of the
vertex set that are ordered tree-like, We call such a structure a clustered graph [6]. Sets of the
system are also called clusters. In [6] it has been shown the following.

Lemma 3.1. Given a clustered graph with connected clusters. We can determine a spanning
tree in linear time, such that the restriction to each cluster forms a subtree.

The key result is the following.

Theorem 3.2. Given a clustered graph with connected clusters and a spanning tree as deter-
mined in previous lemma. One can determine an ordering on the vertices, such that

1. Each final segment forms a subtree.

2. The vertices of any cluster appear consecutively in the ordering.

Assuming that the clustered graph is planar or degree bounded, one applies the algorithm
in previous section.

4 Less Parallel Vertex Nested Dissection for Planar Graphs

A vertex nested dissection is determined as follows.

1. Determine a minimal separator that partitions the graph into two almost equal sized
components.

2. Apply this recursively to the components.

Vertices in the separator are considered as larger that vertices not in the separator. Bornstein,
Maggs, and Miller [2] used a similar idea as in [7] to transform a nested dissection into a
minimal elimination ordering.

1. Determine a minimal extension to a chordal graph of each component when we remove
the vertices of the main minimal separator.

2. Determine, for each minimal separator of the minimal chordal extension of each com-
ponent, the the connected component with all its neighbors in the separator with most
neighbors in the main separator and consider all vertices in other connected components
as smaller than the vertices in the separator.

77

To get everything efficient for planar graphs, we make use of the fact that minimal separators
in planar graphs are cycles or paths in some triangulation and of the cyclic ordering of the
neighborhood of the neighborhood of any connected component when we remove the main
separator.

Since the recursion depth is O(log n), we get the following result.

Theorem 4.1. A vertex nested dissection of a planar graph can be transformed into a minimal
elimination ordering with less fill-in edges in O(n log n) time.

References

[1] A. Berry, E. Dahlhaus, P. Heggernes, G. Simonet, Sequential and parallel triangulat-
ing algorithms for Elimination Game and new insights on Minimum Degree, Theoretical
Computer Science, Vol.409,3(2008), pp. 601-616

[2] C. Bornstein, B. Maggs, G. Miller, Tradeoffs Between Parallelism and Fill in Nested
Dissection, Proceedings of the Thirty-Eighth Annual Symposium on Foundations of Com-
puter Science (1997).

[3] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathematics 9 (1974),
pp. 205-212.

[4] E. Dahlhaus, Minimal Elimination of Planar Graphs, Algorithm Theory - SWAT’98, LL-
NCS 1432 (1998), pp. 210-221.

[5] E. Dahlhaus, Minimal Elimination Ordering for Graphs of Bounded Degree, submitted.

[6] E. Dahlhaus, A linear time algorithm to recognize clustered planar graphs and its paral-
lelization, LATIN’98: Theoretical Informatics Lecture Notes in Computer Science Volume
1380, 1998, pp 239-248

[7] Elias Dahlhaus, Marek Karpinski, An Efficient Parallel Algorithm for the Minimal Elimi-
nation Ordering (MEO) of an Arbitrary Graph, Theoretical Computer Science 134 (1994),
pp. 493-528.

[8] J. Gilbert, R. Tarjan, The Analysis of a Nested Dissection Algorithm, Numerische Math-
ematik 50 (1987), pp. 427-449.

[9] P. Klein, Efficient parallel algorithms for chordal graphs, SIAM J. Comput. 25 (1996), pp.
797-827 (1996).

[10] D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical
Analysis and Applications 32 (1970), pp. 597-609.

[11] D. Rose, R. Tarjan, G. Lueker, Algorithmic Aspects on Vertex Elimination on Graphs,
SIAM Journal on Computing 5 (1976), pp. 266-283.

[12] Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algo-
rithms 3 (1982), S. 57-67.

[13] M. Yannakakis, Computing the Minimum Fill-in is NP-complete, SIAM Journal on Alge-
braic and Discrete Methods 2 (1981), pp. 77-79.

78

On total coloring and equitable total
coloring of cubic graphs with large girth∗

S. Dantas1, C. M. H. de Figueiredo2, G. Mazzuoccolo3, M. Preissmann3,
V. F. dos Santos2, and D. Sasaki2

1IME, Universidade Federal Fluminense, Brazil
2COPPE, Universidade Federal do Rio de Janeiro, Brazil

3CNRS/Grenoble-INP/UJF-Grenoble 1, G-SCOP UMR5272 Grenoble, F-38031, Grenoble, France

We determine the total chromatic number and the equitable total chromatic num-
ber of some infinite families of snarks and of generalized Petersen graphs. Moreover,
a sufficient condition for a cubic graph not to have total chromatic number 4 is pre-
sented.

1 Introduction

Let G be a simple graph. A k-total-coloring of G is an assignment of k colors to the edges and
vertices of G, so that adjacent or incident elements have different colors. The total chromatic
number of G, denoted by χT (G), is the least k for which G has a k-total-coloring. Clearly,
χT ≥ ∆ + 1, where ∆ is the maximum degree of G, and the Total Coloring Conjecture [12]
states that χT ≤ ∆ + 2. This has been proved for cubic graphs [10], so the total chromatic
number of a cubic graph is either 4 or 5. Graphs with χT = ∆ + 1 are said to be Type 1, and
graphs with χT = ∆ + 2 are said to be Type 2. The problem of deciding whether a graph is
Type 1 has been shown NP-complete even for cubic bipartite graphs [9].

A graphG contains a square if it has a chordless cycle on four vertices as an induced subgraph
and a cubic graph is cyclically 4-edge-connected if every edge-cutset of cardinality less than 4
consists of three edges incident to one vertex. So a cyclically 4-edge-connected cubic graph
may contain squares, but it does not contain triangles unless it is the complete graph on four
vertices. The girth of a graph is the length of a shortest cycle contained in the graph.

Snarks are cyclically 4-edge-connected cubic graphs with chromatic index 4. Their study
was motivated by the Four Color Problem. The importance of these graphs arises mainly
from the fact that several conjectures would have snarks as minimal counterexamples, such
as Tutte’s 5-Flow Conjecture, the 1-Factor Double Cover Conjecture, and the Cycle Double
Cover Conjecture.

In 2003, Cavicchioli et al. [5] reported that their extensive computer study of snarks showed
that all snarks with girth greater than 4 and with less than 30 vertices are Type 1, and asked
for the smallest order of a Type 2 snark with such girth. Brinkmann et al. [1] have recently

∗Partially supported by CNPq, CAPES, and FAPERJ.

79

extended the computer study up to order 36. In 2011, it was proved that all members of the
two infinite families of Flower and Goldberg snarks are Type 1 [4]; recently, all members of
the two additional infinite families of Blanuša and Loupekhine snarks have been proved to be
Type 1 [11]; all graphs of these four families are square-free.

Type 2 snarks have very recently been found, but so far every known Type 2 snark contains
a square [2]. On the other hand, since 1988 and even considering bipartite graphs, Type 2
cubic graphs were known [6], and all of them contain a square or a triangle. In fact, all Type 2
cubic graphs that we know (whatever their chromatic index or cyclic-edge-connectivity) have
triangles or squares. So it could be that there exists no Type 2 cubic graph of girth greater
than 4. Then, we consider Question 1, which is a relaxation of the question proposed in [5].

Question 1. [2] Does there exist a Type 2 cubic graph G of girth greater than 4?
A k-total coloring is equitable if the cardinalities of any two color classes differ by at most

one. The least k for which G has an equitable k-total coloring is the equitable total chromatic
number of G, denoted by χe(G). In [13] it was conjectured that χe(G) ≤ ∆ + 2 for any graph
G, and this conjecture was proved for cubic graphs in the same work. Until now, every known
Type 1 graph such that the total chromatic number is strictly less than the equitable total
chromatic number was not cubic [7]. We present in Figure 1 the first known Type 1 cubic
graphs such that χe(G) = 5; notice that the colors of the vertices are not indicated as they
are easily deduced from the colors of incident edges. Note that these graphs contain squares
or triangles. The equitable total chromatic number of any Flower snark is known to be 4 [4].
We start to study this more restrictive type of total coloring, proposing Question 2.

Question 2. Does there exist a Type 1 cubic graph G of girth greater than 4 such that
χe(G) = 5?

Figure 1: Type 1 cubic graphs of small girth such that χe(G) = 5.

A sufficient condition for a cubic graph to be Type 2 is presented in this work, contributing
in the search for an answer to Question 1. In addition, we contribute to Questions 1 and 2 by
exhibiting infinite families that indicate that possibly both questions would have a No answer,
or at least provide further evidences that a Yes answer would require, for both questions, a
very large graph.

80

2 Generalized Petersen graphs

We consider the well-known generalized Petersen graphs G(n, k). Graph G(n, k) has vertex set
V = {u0, u1, ..., un−1, v0, v1, ..., vn−1} and edge set consistingof all pairs of the form (vi, vi+1),
(vi, ui), and (ui, ui+k), for i = 0, ..., n−1, where subscripts are read modulo n and k < n

2 . Graph
G(5, 2) is the Petersen graph that is Type 1 and the unique of chromatic index 4 among these
graphs [3]. Graphs G(n, 1) are the n-Prisms that are Type 1 except for the graph G(5, 1) [6].

We have verified by a computer search1 that the generalized Petersen graphs of order up
to 70 are Type 1 with only two exceptions: G(5, 1) which has squares and G(9, 3) which has
triangles; and except for these two graphs, all generalized Petersen graphs of order up to 40
have equitable total chromatic number 4. Furthermore, we prove the following results:

Theorem 1. For every n ≥ 5, the generalized Petersen graph G(n, 2) is Type 1. Furthermore,
for every n ≡ 0 mod 4, the generalized Petersen graph G(n, 2) has equitable total chromatic
number 4.

Theorem 2. For every n ≥ 7, the generalized Petersen graph G(n, 3) is Type 1, except for
G(9, 3). Furthermore, for every n ≡ 0 mod 4, the generalized Petersen graph G(n, 3) has
equitable total chromatic number 4.

Theorem 3. If G(n, k) is Type 1, then G(n′, k′) is Type 1, for all n′ ≡ 0 mod n and all
k′ ≡ k mod n.

3 Snarks

First, we consider Blowup and SemiBlowup infinite families of square-free snarks recently
defined by Hägglund [8]. Following the notation of [8], we define for each n ≥ 5, the n-
Blowup and the n-SemiBlowup as the Blowup(G(n, 1);Cn) and the SemiBlowup(G(n, 1);Cn),
respectively, where G(n, 1) is the generalized Petersen graph also known as n-Prism and Cn is
the outer cycle of G(n, 1). Let P be the Petersen graph, and let Z1, Z2, ..., Zn be n copies of
the graph Z obtained by removing two adjacent vertices of P . According to Figure 2 where
we depict the cases for n = 5, the n-Blowup and the n-SemiBlowup are the two cubic graphs
constructed by putting Z1, Z2, ..., Zn along a “cycle”. The smallest cases covered by Theorem 4
are depicted in Figure 2.

We remark that we are able to extend both families (by replacing the central cycle by other
subgraphs) and show additional Blowup and SemiBlowup families whose graphs are Type 1.

Theorem 4. For each n ≥ 5, the n-Blowup and the n-SemiBlowup are Type 1.

Second, we consider the two Blanuša families, constructed using the dot product (a well-
known operation used for constructing infinitely many snarks) of Petersen graphs starting from
the two Blanuša snarks of order 18 [14]. The next result uses the 4-total-colorings determined
in [11].

Theorem 5. All snarks of Blanuša families have equitable total chromatic number 4.

1Backtracking algorithm implemented in C programming language and run in Mac OS X system over a 2.4GHz
dual core processor.

81

Figure 2: Theorem 4 for 5-SemiBlowup and 5-Blowup.

4 Type 2 cubic graphs

We present a sufficient condition for a cubic graph to be Type 2. We use the fact that in a
4-total-coloring of a Type 1 cubic graph G, each color class is the union of a matching M and a
set of independent vertices U . The independence condition on U implies that M is a maximal
matching of G. So, we have that a cubic graph is Type 1 iff its set of edges may be partitioned
into 4 maximal matchings. Type 2 cubic graphs G(5, 1) and G(9, 3) satisfy the assumption of
the following proposition.

Proposition 6. If a cubic graph G has no maximal matching of size less or equal to |E|4 , then
G is Type 2.

References

[1] G. Brinkmann, J. Goedgebeur, J. Hägglund, K. Markström. Generation and properties
of snarks. To appear in J. Comb. Theory B, (2011).

[2] G. Brinkmann, S. Dantas, C. M. H. de Figueiredo, M. Preissmann, D. Sasaki. Snarks with
total chromatic number 5. Proc. 11th CTW 2012, (2012) pp. 40–43 (full version submitted
for publication).

[3] F. Castagna, G. Prins. Every Generalized Petersen Graph has a Tait Coloring. Pacific J.
Math., 40, (1972) pp. 53–58.

[4] C. N. Campos, S. Dantas, C. P. Mello. The total-chromatic number of some families of
snarks. Discrete Math., 311, (2011) pp. 984–988.

[5] A. Cavicchioli, T. E. Murgolo, B. Ruini, F. Spaggiari. Special classes of snarks. Acta
Appl. Math., 76, (2003) pp. 57–88.

[6] A. G. Chetwynd, A. J. W. Hilton. Some refinements of the total chromatic number
conjecture. Congr. Numer., 66, (1988) pp. 195–216.

82

[7] H. L. Fu. Some results on equalized total coloring. Congr. Numer., 102, (1994) pp
111–119.

[8] J. Hägglund. On snarks that are far from being 3-edge-colorable. arXiv:1203.2015,
(2012).

[9] C. J. H. McDiarmid, A. Sánchez-Arroyo. Total colouring regular bipartite graphs is NP-
hard. Discrete Math., 124, (1994) pp. 155–162.

[10] M. Rosenfeld. On the total coloring of certain graphs. Israel J. Math., 9, (1971) pp.
396–402.

[11] D. Sasaki, S. Dantas, C. M. H. de Figueiredo. The hunting of a snark with total chromatic
number 5. Proc. LAGOS 2011, Electron. Notes Discrete Math., 37, (2011) pp. 45–50 (full
version submitted for publication).

[12] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3,
(1964) pp. 25–30.

[13] W. F. Wang. Equitable total coloring of graphs with maximum degree 3. Graphs Combin.,
18, (2002) pp. 677–685.

[14] J. J. Watkins. On the construction of snarks. Ars Combin., 16-B, (1983) pp. 111–123.

83

Routing ATM Loading Vehicles

Ekrem Duman∗1 and Ahmet Altun2

1Özyeğin University, Faculty of Engineering, Industrial Engineering Department, Istanbul, Turkey,
ekrem.duman@ozyegin.edu.tr

2Intertech, Decision Support Systems Department, Istanbul, Turkey, ahmet.altun@intertech.com.tr

1 Introduction

In this study we take up the problem of finding the routes of an ATM loading machine in
multiple days. Here the owner bank of a set of ATMs wants to determine when and how much
to load each ATM and what should be the route of the money vehicle so that the total cost of
money holding and money loading be minimized and that a minimum service level (probability
that customers will find money in the ATM) is attained. Forecasting the amount of money to
be withdrawn in the future days is an important first step in solving this complicated problem.
Forecasting is out of the scope of our study but it will be the main input to our optimization
and routing layer. We start with a general overview of routing problems.

The vehicle routing problem (VRP) is a well-known combinatorial optimization problem
where a set of customers with known demands are to be served by an homogeneous fleet of
vehicles located at a central depot (Hong and Park, 1999; Toth and Vigo, 2002; Jin et al.,
2007). Each vehicle starts at the depot, loaded by the commodity to be distributed to the
customers, visits a number of pre-determined subset of customers and returns back to the
depot after making its tour. The amount of load on a vehicle cannot exceed its capacity. The
objective is to minimize the total distance (or time) traveled by all vehicles. The number of
vehicles is usually unknown and determining it is a part of the solution. VRP can be regarded
as a combination of two well-known NP-Hard problems: the Bin Packing Problem (BPP) and
the Traveling Salesman Problem (TSP). The grouping of the customers so that the sum of the
customer demands in a group does not exceed the vehicle capacity is the BPP part and then
determining the visiting sequence of customers (for each vehicle) so that the distance traveled
by the vehicle is minimized constitutes the TSP part.

VRP has many interesting variants. VRP with heterogeneous fleet of vehicles (VRPHF)
where the vehicles are not identical in terms of capacity and/or speed (Golden et al. 1984;
Taillard, 1999), VRP with time windows (VRPTW) where customers may have restrictions on
when they can be visited (Tan et al., 2001; Haghani and Jung, 2005), time dependent VRP
(TDVRP) where the cost (distance) of traveling between two points depends on the time of
the day due to traffic rush hours etc (ref), or, VRP with pickup and delivery (VRPPD) where
besides delivery there are also items to be picked up from the customers (Nagi and Salhi, 2005),
are to name a few. All of these variants are NP-Hard similar to the classical VRP (Gary and
Johnson, 1979; Laporte, 1992).

∗Corresponding author.

85

Coming back to our case, we developed a four layer solution to the full ATM cash manage-
ment and optimization problem as follows:

• Forecasting

– Forecasting withdrawal amounts for the planning period

– Inputs: past amounts withdrawn and some explanatory variables

• Optimization

– Using the holding cost (interest that can be earned) and the money loading cost
(cassette preparation and transfer costs) determine the money loading days which
will minimize the total costs

– Inputs: monthly forecast values and all cost figures

• Routing

– First form the initial routes using the loading days obtained in the previous step

– Improve the routes by considering changes

∗ Within route

∗ Between routes

∗ Between days

• Daily Route Modifications

– The actual money withdrawals might be different than the forecasts. It may be a
necessity to go to an ATM before it was planned

∗ When to go that ATM

∗ How much to load on that ATM

∗ Should other nearby ATMs be visited also

∗ How the routes should be modified

We are concerned with layer 3 here. In the second layer, the optimum loading days are
found by assuming fixed (route independent) loading costs. However, since loading costs are
closely related to the routes of the vehicles, the solution found in layer 2 can be regarded as a
rough approximate to the overall problem. Once the lists of ATMs to be loaded each day are
obtained from layer 2, we can start forming the vehicle routes. However, the VRPS tackled
with are different than classical VRP instances in that we do not have to go to an ATM at the
stated day. It is possible to visit an ATM in an alternative day and if it brings reduction in
cost it should be implemented. For example if we visit an ATM one day before the planned
day the money holding cost will be more (the money loaded will be more to satisfy the demand
of the extra day) but if a saving in routing can be obtained at the same amount or more than
making a change in the loading day will be beneficial. Similar problems are defined in inventory
routing problems literature but as for the VRP literature this is a interesting variant.

For the solution of VRP, we start with the Savings algorithm to find initial routes for each
day of the planning period. Then each these routes are improved first by the Or-Opt algorithm
(Or, 1976). Later, the routes of the same day are improved in total by switching nodes from
one route to other or by exchanging nodes between two routes. Then, the routes of the entire

86

planning period are improved by switching or exchanging the nodes in the routes of different
(but consecutive) days. For the example problem of Istanbul municipality the improvements
obtained by each of these operators are tabulated in Table 1 and Table 2.

The main contributions of this study are twofold. First, we provide a mathematical for-
mulation for this interesting scheduling problem that turns out to be a new variant of VRP.
Because of its difficulty the formulation was even not attempted in the earlier study of Duman
et al. [3]. The second main contribution is that, although they are not targeting to solve the
main scheduling problem (VRPSC), new and simple heuristic methods are proposed to solve a
simplified version of it. However, the heuristics suggested can also be used to solve the VRPSC
due to its special structure.

References

[1] Fotakis D. and Spirakis, P., 1998. A hamiltonian approach to the assignment of non-
reusable frequencies. in Proceedings of the Eighteenth Conference on the Foundations of
Software Technology and Theoretical Computer Science. India: Chennai 18-29.

87

[2] Duman, E., Ceranoglu, A.N., and Ozcelik, M.H., 2005. A TSP (1,2) application arising
in cable assembly shops. Journal of the Operational Research Society 56, 642-648.

[3] Hong, S.C., Park, Y. B., 1999. A heuristic for bi-objective vehicle routing with time
window constraints. International Journal of Production Economics 62, 249-258.

[4] Duman, E, Yildirim, M.B. and Alkaya, A.F., 2008. Scheduling continuous aluminum lines.
International Journal of Production Research 46, 5701-5718.

[5] Garey M.R. and Johnson, D.S., 1979. Computers and intractability: A guide to the theory
of NP-Completeness. Freeman. San Francisco.

[6] Golden B.L., Assad, A.A., Levy L. and Gheysens, F.G., 1984. The fleet size and mix
vehicle routing problem. Computers and Operations Research 1, 49-66.

[7] Haghani A. and Jung, S., 2005. A dynamic vehicle routing problem with time-dependent
travel times. Computers and Operations Research 32, 2959-2986.

[8] Hong, S.C., Park, Y. B., 1999. A heuristic for bi-objective vehicle routing with time
window constraints. International Journal of Production Economics 62, 249-258.

[9] Jin, M, Liu, K and Bowden R.O., 2007. A two-stage algorithm with valid inequalities for
the split delivery vehicle routing problem. International Journal of Production Economics
105, 228-242.

[10] Laporte, G, 1992. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59, 345-358.

[11] Nagy G. and Salhi S. 2005. Heuristic algorithms for single and multiple depot vehicle
routing problems with pickups and deliveries. European Journal of Operational Research
162, 126-141.

[12] Taillard E.D., 1999. A heuristic column generation method for the heterogeneous fleet
VRP. RAIRO Operations Research 33, 1-14.

[13] Tan, K.C. Lee L.H. and Ou, K., 2001. Artificial intelligence heuristics in solving vehicle
routing problems with time window constraints. Engineering Applications of Artificial
Intelligence 14, 825-837.

[14] Toth P. and Vigo D., editors. 2002. The vehicle routing problem. In: SIAM Monographs
on Discrete Mathematics and Applications. Philadelphia.

88

Performance Guarantees for Scheduling
Algorithms under Perturbed Machine

Speeds∗

Michael Etscheid1

1Dept. of Computer Science, University of Bonn, Germany, etscheid@cs.uni-bonn.de

We study three simple scheduling algorithms. For unrestricted machines,
Brunsch et al. [3] showed that the worst-case performance guarantees of these algo-
rithms are not robust if the job sizes are subject to random noise. However, in the
case of restricted related machines the worst-case bounds turned out to be robust
even in the presence of random noise. We show that if the machine speeds rather
than the job sizes are perturbed, also the performance guarantees for restricted
machines decrease thus yielding a stronger result.

1 Introduction

For many simple scheduling algorithms, the worst-case performance guarantees are known
up to a constant factor. However, the instances used to construct lower bounds seem to be
artificial and not practically relevant if there is some noise on the input. Therefore, we use the
framework of smoothed analysis to identify worst-case bounds which are too pessimistic with
high probability if the input is perturbed. In this section, we define the scheduling problem
and introduce the framework of smoothed analysis shortly. In Section 2, we compare briefly
our results with the worst-case bounds and the bounds given in [3]. In Section 3, we derive a
smoothed lower bound for the jump algorithm on restricted machines.

The Scheduling Problem. Let J = {1, . . . , n} be the set of jobs and M = {1, . . . ,m} be
the set of machines on which the jobs shall be processed. Each machine i ∈M has a speed si
and each job j ∈ J has a processing requirement pj . The speeds of the fastest and the slowest
machine are denoted by smax and smin, respectively. We consider two different environments:
In the case of unrestricted machines, each job is allowed to run on every machine. In the case
of restricted machines, each job j ∈ J has a set Mj ⊆M of allowed machines. These variables
form an instance I of the scheduling problem.

A function σ : J → M is called a schedule. The time a machine i needs to process job j
is pj/si if job j is allowed to run on machine i, and ∞ otherwise. Given a schedule σ for an
instance I, the load of a machine i is defined as Li(I, σ) =

∑
j∈σ−1(i) pj/si. The makespan is

defined as Cmax(I, σ) = maxi∈M Li(I, σ). We write C∗max(I) for an optimal makespan. The
goal is to minimize the makespan.

∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

89

algorithm worst-case perturbed job sizes perturbed machine speeds

jump Θ(
√
m) [4, 7] Θ(φ) [3] Θ(φ)

lex-jump Θ
(

min
{

logm
log logm , log smax

smin

})
[5] Θ(log φ) [3] Θ(log φ)

list Θ(logm) [1, 4] Θ(log φ) [3] Θ(log φ)

Table 1: Performance guarantees for unrestricted machines.

Studied Scheduling Algorithms. We study a greedy and two local search algorithms.
The list scheduling algorithm starts with an empty schedule. Then it iteratively assigns an

unscheduled job to the machine on which it will be completed first with respect to the current
partial schedule. Each schedule which can be generated this way is called a list schedule.

The jump and lex-jump algorithms start with an arbitrary schedule and then perform local
improvement steps. In each step, a job is reassigned to a different machine where it finishes
earlier. We assume here that all jobs assigned to a machine finish at the same time, which is
the load of the machine. In the jump algorithm, only jobs assigned to a critical machine, i.e., a
machine with maximal load, are allowed to be reassigned whereas the lex-jump algorithm does
not have this limitation. A schedule which cannot be improved by the (lex-)jump algorithm is
called (lex-)jump optimal.

We write Jump(I) for the set of all jump optimal schedules for a scheduling instance I.

Smoothed Analysis. The framework of smoothed analysis was introduced by Spielman and
Teng [8] to explain the good runtime of some algorithms in practice despite a bad worst-case
runtime. We use the more general model suggested by Beier and Vöcking [2]. Let φ ≥ 1 be
a parameter for the maximum density of the noise. A φ-smooth instance I consists of the
job sizes p1, . . . , pn, subsets Mj ⊆ M, j ∈ J, in the case of restricted machines, the number m
of machines, and density functions fi : [0, 1] → [0, φ] for all machines i ∈ {1, . . . ,m}. Each
machine speed si is then chosen according to the density function fi independently of the
other machine speeds. Thus, every φ-smooth instance is a distribution over infinitely many
scheduling instances. For φ = 1, this model complies with an average case analysis, whereas
for φ→∞ the smoothed analysis tends to a worst-case analysis.

2 Related work and results

Table 1 shows an overview of the worst-case and smoothed performance guarantees in the
environment of unrestricted machines. We were able to reproduce the same results as Brunsch
et al. [3] with perturbed machine speeds instead of perturbed job sizes. Accordingly, we get
the same conclusions that the lex-jump algorithm and the list jump algorithm should perform
well in practice. An interesting deduction of theirs is that the smoothed price of anarchy for
routing games on parallel links is Θ(log φ) as well, as pure Nash equilibria can be seen as local
optima according to the lex-jump algorithm. This result carries over to our smoothed model
with perturbed link speeds.

As Table 2 shows, the worst-case performance bounds in the environment of restricted ma-
chines are robust against random noise on the job sizes. We calculate the expected values of
these worst-case bounds to obtain the smoothed bounds in our model. As the expected speed

90

algorithm worst-case perturbed job sizes perturbed machine speeds

jump Θ
(√

m · smax
smin

)
[6] Θ

(√
m · smax

smin

)
[3] Θ

(
m
√
φ
)

lex-jump Θ
(

logS
log logS

)
[6] Ω

(
logm

log logm

)
[3] Θ

(
min

{
m, log(mφ)

log log(mφ)

})

Table 2: Performance guarantees for restricted machines. Here, S =
∑m

i=1
si
smin

.

of the slowest machine is in Θ(1/(mφ)), the bounds change in an intuitive way. On the other
hand, we construct classes of smoothed scheduling instances showing that the resulting upper
bounds are tight up to a constant factor.

3 Proof of a lower bound for the jump algorithm

We use the remaining space to prove a lower bound for the jump algorithm in the environment
of restricted machines.

Lemma 3.1. Let m ≥ 2, s1, . . . , sm be drawn from [0, 1/φ]. Then Pr
[
smin ∈

[
1
mφ ,

2
mφ

]]
≥ 1

9 .

Proof. For a given α ∈ [0, 1/φ], the inequality smin > α holds iff si > α for all i ∈ {1, . . . ,m}.
As Pr [si ≤ α] = αφ and the machine speeds are drawn independently, it follows directly that
Pr [smin ≤ α] = 1− (1− αφ)m. Therefore,

Pr

[
smin ∈

[
1

mφ
,

2

mφ

]]
=

(
1− φ

mφ

)m
−
(

1− 2φ

mφ

)m
≥
(

1− 1

2

)2

− e−2 ≥ 1

9
,

where the first inequality follows from the well-known fact that (1 + x/m)m converges to ex

for m→∞ and that the term is monotonically increasing for m ≥ −x.

Theorem 3.2. For every φ > 4 and m ≥ 6, there is a φ-smooth instance I with m restricted
machines and uniform job sizes such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
= Ω

(
m
√
φ
)
.

Proof. Let k =
⌊
m
3

⌋
≥ 2. The machine speeds s1, . . . , sk are uniformly drawn from [0, 1/φ],

whereas the machine speeds sk+1, . . . , s2k and s2k+1, . . . , sm are drawn from
(

1√
φ
− 1

φ ,
1√
φ

)
and

[
φ−1
φ , 1

]
, respectively. The jobs are partitioned in two classes J = J1 ∪̇J2 with J1 = {1, . . . , k}

and |J2| = k
⌈√

φ
⌉
. All jobs have size 1. Job j ∈ J1 is only allowed to run on the machines j

and k + j while every job in J2 is allowed to run on the machines 1, . . . , 3k.
First consider a schedule σ′, which assigns each job j ∈ J1 to machine k+ j. The jobs in J2

are distributed evenly over the k machines 2k + 1, . . . , 3k. It follows that

Cmax(I, σ′) ≤ max

{(
1√
φ
− 1

φ

)−1
,
k
⌈√

φ
⌉

k
· φ

φ− 1

}
≤ max

{
φ√
φ− 1

, 2
√
φ

}
≤ 2
√
φ ,

where the inequalities follow from φ > 4, i.e.,
√
φ− 1 >

√
φ−√φ/2 =

√
φ/2 and

91

φ

φ− 1

⌈√
φ
⌉
≤ 4

3

(√
φ+

(⌈√
φ
⌉
−
√
φ
))
≤ 4

3

√
φ+

4

3
≤ 2
√
φ.

We now construct a bad jump optimal schedule σ: Let i0 be the slowest machine. Since
1
φ ≤ 1√

φ
− 1

φ , we know that i0 ≤ k. Let F be the event that si0 6∈
[

1
kφ ,

2
kφ

]
. If F occurs, set σ

to an arbitrary schedule. Otherwise assign job i0 ∈ J1 to machine i0 and
⌈
sk+i0
si0
− 1
⌉

jobs from

J2 to machine k + i0. Distribute the remaining jobs in the same way as in σ′. This procedure

is well-defined, as
⌈
sk+i0
si0
− 1
⌉
≤ sk+i0

si0
≤ 1/

√
φ

1/(kφ) = k
√
φ ≤ k

⌈√
φ
⌉

= |J2|. Note that this way no

further jobs are assigned to the machines i0 and k + i0 and that every other machine has not
a greater load than in σ′. Because of

Lk+i0 =

⌈
sk+i0
si0
− 1
⌉

sk+i0
<

sk+i0
si0

sk+i0
=

1

si0
= Li0 ≤

⌈
sk+i0
si0

⌉

sk+i0
= Lk+i0 +

pi0
sk+i0

and

Li0 =
1

si0
≥ kφ

2
≥ φ > 2

√
φ ≥ Cmax(I, σ′) ≥ Li ∀i ∈M \ {i0, k + i0} ,

machine i0 is the only critical machine and σ is jump optimal with Cmax(I, σ) = 1
si0
≥ kφ

2 .

Therefore, E
I∼I

[
maxσ∈Jump(I)

Cmax(I,σ)
C∗

max(I)

]
≥ 1 ·Pr [F] + kφ/2

2
√
φ
·Pr

[
F
]
≥ k

√
φ

36 = Ω
(
m
√
φ
)
, where

we used Pr
[
F
]
≥ 1

9 due to Lemma 3.1.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM, 44(3), pp.
486-504, 1997.

[2] R. Beier, B. Vöcking. Random knapsack in expected polynomial time. Journal of Computer
and System Sciences, 69(3), pp. 306-329, 2004.

[3] T. Brunsch, H. Röglin, C. Rutten, T. Vredeveld. Smoothed Performance Guarantees for
Local Search. Proc. of the 19th ESA, pp. 192-206, 2011.

[4] Y. Cho, S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Com-
puting, 9, pp. 91-103, 1980.

[5] A. Czumaj, B. Vöcking. Tight bounds for worst-case equilibria. ACM Transactions on
Algorithms, 3(1), 2007.

[6] D. Recalde, C. Rutten, P. Schuurman, T. Vredeveld. Local search performance guarantees
for restricted related parallel machine scheduling. LATIN 2010: Theoretical Informatics,
volume 6034 of LNCS, pp. 108-119. Springer, Berlin, 2010.

[7] P. Schuurman, T. Vredeveld. Performance Guarantees of Local Search for Multiprocessor
Scheduling. Informs Journal on Computing, 19(1), pp. 52-63, 2007.

[8] D. A. Spielman, S. H. Teng. Smoothed Analysis of Algorithms: Why The Simplex Algo-
rithm Usually Takes Polynomial Time. Journal of the ACM, 51(3), pp. 385-463, 2004.

92

Observation and Evolution of
Finite-dimensional Markov Systems

Ulrich Faigle1 and Alexander Schönhuth2

1University of Cologne
2CWI Amsterdam

1 Markov systems

A system S is an entity that can be in one of several states. Let S be the set of states of S. An
n-dimensional Markov representation is an injective map ρ : S → Q onto an affine hyperplane
Q of an n-dimensional Hilbert space H over R. We denote the inner product in H by 〈x|y〉
and assume

Q = {x ∈ H | τ(x) = 1},
where τ : H → R is a linear functional. Given the representation ρ, we identify S with Q and
speak of Q as the collection of (Markov) states of S.

An n-dimensional Markov system S admits a standard representation σ : S → Q into the
euclidean coordinate space Rn with inner product

〈x|y〉 = xT y =
n∑

i=1

xiyi for all xT = (x1, . . . , yn), yT = (y1, . . . , yn) ∈ Rn.

and, with 1T := (1, 1, . . . , 1), the affine hyperplane

Q = {x ∈ Rn | τ(x) = 1Tx = x1 + . . .+ xn = 1}.
However, also other representations are of interest to the mathematical modeler:

1.1 Quantum Markov systems

Motivated by the classical model of m-dimensional quantum systems, consider the (complex)
Hilbert space Cm×m of complex (m×m)-matrices with inner product

〈C|D〉 = tr(D∗C),

where D∗ is the conjugate transpose of D and tr(A) denotes the trace of a matrix A. Recall
that a matrix C is self-adjoint (or hermitian) if C = C∗ and let H denote the collection of all
self-adjoint (m×m)-matrices C. It is not difficult to see that H forms a real(!) Hilbert space
of dimension n = m2. Letting I denote the identity matrix of Cm×m, we call the members of
the hyperplane

D = {D ∈ H | tr(D) = 〈D|I〉 = 1}
Markov density matrices and refer to a system with states corresponding to Markov density
matrices a Markov quantum system.

93

1.2 Quantum activity systems and quantum bits

While classical computation is based on boolean bits, quantum computation (see, e.g., [8])
models activities by quantum bits (”qbits”), where one qbit has the form

q = α|0〉+ β|1〉 with α, β ∈ C s.t. |α|2 + |β|2 = 1.

The qbit q has has the interpretation that |0〉 is observed with probability |α|2 ≥ 0 and |1〉
with probability |β|2 = 1− |α|2 ≥ 0.

An n-dimensional quantum activity system is the n-fold tensor product A = A1 ⊗ · · · ⊗ An
of 1-dimensional quantum activity systems Ai. An n-dimensional quantum activity state (”n-
qbit”) is therefore of the form

q =
∑

k∈{0,1}n
αk|k〉 with αk ∈ C and

∑
k |α|2 = 1 (1)

and corresponds to the parameter vector v = (αk|k ∈ {0, 1}n) ∈ C2n with (squared) norm

‖v‖2 = v∗v = |α1|2 + . . .+ |αn|2 = 1.

Note that an n-qbit q in the form (1) cannot directly be interpreted a Markov state in
standard form. The associated matrix Q = vv∗ is self-adjoint with trace

tr(vv∗) = v∗v = |α1|2 + . . .+ |αn|2 = 1

and hence a Markov density (in fact, a classical quantum density).

1.3 Pseudo-boolean functions and cooperative games

A real-valued set function v : 2N → R is a pseudo-boolean function (see [6]). Identifying the
subsets K ⊆ N with their associated boolean states |k〉, a pseudo-boolean function v can be
viewed as a formal linear combination

v =
∑

k∈{0,1}n
αk|k〉

with the coefficients αk = v(K).

From a game theoretic point of view, the pair Γ = (N, v) is a cooperative game with charac-
teristic function v. The parameter v(K) is thought to reflect the ”value” of the coalitionK ⊆ N
in a given economic context. It is reasonable to assume that the game Γ is scaling-invariant.
So we might equally well study the normalized game (N, ṽ), where

ṽ =

{
0 if v ≡ 0

v/‖v‖2 if ‖v‖2 =
∑

K⊆N v(K)2 6= 0

and think of a non-trivial cooperative game as a qbit with real coefficients.

Remark 1.1. The Hadamard transformation H of a a 1-qbit is the linear transformation

|k1 . . . kn〉 7→ H|k1〉 ⊗ · · · ⊗H|kn〉 (k1 . . . kn ∈ {0, 1}2). (2)

The Hadamard coefficients α̂k of v correspond to the Banzhaf indices (see [2]), well-known in
social choice theory. (See, e.g., [7] for more applications of the Hadamard transformation to
social choice problems and [5] for more on interaction indices).

94

2 Observables and measurements

Returning to the general Markov state model with the n-dimensional Hilbert space H and
Q = {v ∈ H | τ(v) = 1} relative to the system S, let us fix a particular basis B ⊆ Q.

Remark 2.1. We think of B as the set of representatives of the ”ground states” of S.

We call a function X : B → {0, 1} an information function. So X models a ”property”
ground states b ∈ B may or may not have. Extending X linearly to all of H, X corresponds
to an element x ∈ H such that

〈x|b〉 = X(b) for all b ∈ B.

Assume that S happens to be in the Markov state q =
∑

b∈B qbb and define

πq(r) =
∑

b∈B:X(b)=r

qb (r = 0, 1).

We call X (statistically) observable in the state q if πq(r) ≥ 0 holds for r = 0, 1.

3 Evolution of Markov systems

A Markov (evolution) operator relative to the Markov system S, represented as the hyperplane
Q of the Hilbert space H is a linear transformation µ : H → H such that µ(q) ∈ Q holds for
all q ∈ Q.

A (generalized) Markov chain is a pair (µ, q(0)) where µ is a Markov operator and q a Markov
state. The pair (µ, q(0)) stands short for the Markov evolution of states in discrete time when
the Markov system S is in state q(0) at time t = 0:

q(t) = µ(q(t−1)) = µt(q(0)) for t = 1, 2,

Examples of Markov chains relative to the standard representation are, of course, classical
Markov chains, where µ is represented by a probability transition matrix.

Other examples arise from the Schrödinger wave evolution in quantum activity systems.

3.1 Evolution and measurement

The concept of a measurement can be naturally be put into context with evolution. We call a
family X = {µr | r ∈ R} of linear operators µr : H → H a Markov measurement with (finite)
scale R iff

µX :=
∑

r∈R
µa is a Markov operator. (3)

In light of (3), we write (X, q) as a unifying notation for both a Markov measurement X and
an associated Markov chain (µX , q) and refer to it as a Markov measurement chain. A Markov
measurement chain is invariant if µX(q) = q.

Now consider concatenating measurements (w := r1...rn)

µw(q) := µrn(...(µr1(q))...)

95

and observe that, by multinomial expansion, µtX =
∑

w∈Rt µw. We call a Markov measurement
chain (X, q) (statistically) observable iff

τ(µw(q)) ≥ 0 for all w ∈ R∗.

3.2 Equivalence and minimality of Markov measurements

We call two Markov measurement chains

X1 = ({µr : H1 → H1 | r ∈ R}, q1) and X2 = ({ρr : H2 → H2 | r ∈ R}, q2)

where, possibly, dimH1 6= dimH2, equivalent iff

τ1(µr̄(q1)) = τ2(µr̄(q2)) for all r̄ ∈ R∗ =
∑

t≥0

Rt.

We write
(X1, q1) ∼ (X2, q2)

in that case.

We call a Markov measurement chain (X, q) on H minimal iff dimH is minimal among all
Markov measurement chains that are equivalent to (X, q). (See also [4] for details on how to
perform equivalence tests efficiently.)

3.3 Decomposition of Markov measurements

We present the following new theorem:

Theorem 3.1 (Decomposition of invariant Markov measurement chains). Let X = ({µr :
H → H | r ∈ R}, q) be a minimal, observable, invariant Markov measurement chain. Let
d := dim(EigµX (1). Then there are minimal, observable, invariant Markov measurement chains

Xi := ({µ(i)
r : Hi → Hi | r ∈ R}, qi) i = 1, ..., d

such that

(i) q = q1 + ...+ qd

(ii) (X, qi) ∼ (Xi, qi)

(iii) dim(EigµXi
(1)) = 1.

(iv) H ∼= H1 ⊗ ...⊗Hd.

Remark 3.2. dim EigµX (1) ≥ 1, see [3].

One may perceive this theorem as a building block for a unifying theory of classification for,
for example, hidden Markov processes, quantum random walks and action-based cooperation
systems emerging from game theory [10].

96

References

[1] J.-P. Aubin: Cooperative fuzzy games. Math. of Operations Research 6 (1981), 1-13.

[2] J.F. Banzhaf: Weighted voting does not work: A mathematical analysis. Rutgers Law
Review 19 (1965), 317-347.

[3] U. Faigle and A. Schönhuth: Asymptotic mean stationarity of sources with finite evolution
dimension, IEEE Trans. Information Theory 53 (2007), 2342-2348.

[4] U. Faigle and A. Schönhuth: Efficient tests for equivalence of hidden Markov processes and
quantum random walks, IEEE Trans. Information Theory, 57 (2011), 1746-1753.

[5] M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap, Aggregation Functions. Encyclopedia
of Mathematics and its Applications vol. 127, Cambridge, 2009.

[6] P.L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related
Areas. Springer-Verlag, 1968.

[7] G. Kalai: A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem.
Advances in Applied Mathematics 29 (2002), 412-426.

[8] A. Yu. Kitaev, A.H. Shen and M.N. Vyalyi, Classical and Quantum Computation, Graduate
Studies in Mathematics vol. 47, American Mathematical Society, 2002.

[9] A. Schönhuth, Discrete-valued stochastic vector spaces. Doctoral dissertation (in German),
Universität zu Köln, 2006.

[10] J. Voss, A System-theoretic Approach to Multi-Agent Models. Doctoral dissertation (in
German), Universität zu Köln, 2012.

97

Optimal Cost Sharing for Capacitated
Facility Location Games

Philipp von Falkenhausen∗1 and Tobias Harks2

1Technical University Berlin
2Maastricht University

1 Introduction

In a capacitated facility location game, there is a set N of players that each need to connect
to a facility from a set M . A user i of a facility r experiences a transport cost ti,r for the
connection to r and additionally has to pay a share of the facility’s cost. Specifically, given a
strategy xi ∈ M for every player i, we denote the joint strategy by x. The users i ∈ Nr(x) of
facility r each impose a load di, such that the total load is `r(x) =

∑
i∈Nr(x)

di. The facility
has load-dependent cost, which we denote interchangeably by cr(x) = cr(`r(x)). Each player
i pays a share ξi(x) of the cost of facility xi and the player’s goal is to choose xi such as to
minimize ξi(x) + ti,xi given the other players choices x−i. We require the cost shares of the
users of a facility to sum up to the facility’s cost

∑
i∈Nr(x)

ξi(x) = cr(x).
Our only assumption on the cost functions is that they are nondecreasing, therefore hard

capacities can be modeled by a sharp increase in cost. The restriction that each player connects
to only one facility is made only to improve clarity of the exposition, our results also hold for the
case where players require a connection to multiple facilities with individual matroid support
constraints.

Given the facility location model (N,M, d, t, c), in an ideal world facilities are allocated
optimally, that is, an allocation minimizes the social costs. In distributed systems, however,
players will selfishly select facilities for their demands based on their transport cost and the
cost shares they have to pay. While physical transport cost is unavoidable, the ways the
monetary cost of a facility is shared among its users - the cost sharing protocol ξ - determine
the Nash equilibria of the strategic game induced. A pure Nash equilibrium is a strategy profile
x such that no player can unilaterally improve by switching to a different strategy r ∈M , i.e.
ξi(x) + ti,xi ≤ ξi(r, x−i) + ti,r.

The main objective of this paper is to design cost sharing protocols so as to minimize the
efficiency loss of the equilibria induced. We consider the price of anarchy and the price of
stability as the two prevailing performance metrics used in the literature. The price of anarchy
(PoA) is defined as the worst-case ratio of the cost of a Nash equilibrium over the cost of a
system optimum, while the price of stability (PoS) captures the ratio of the best possible Nash
equilibrium over a system optimum.

∗This research was supported by the Deutsche Forschungsgemeinschaft within the research training group
‘Methods for Discrete Structures’ (GRK 1408).

99

Table 1: The results without reference are derived in this paper, Hn =
∑n

i=1
1
i .

Player-spec. Matroids Symmetric Matroids without Delays
PoS PoA PoS PoA

general cost Hn n Hn [4] Hn [4]
concave cost 1 n 1 ≤ n
convex cost 1 1 1 1

Our Results. The first main result is a characterization of Nash equilibria in games with
general cost functions and player-specific strategy spaces, showing that only a subclass of
strategy profiles (called decharged) are candidates for being Nash equilibria. This allows us to
give lower bounds by constructing instances where all decharged profiles are expensive. As a
second contribution, we give an algorithm that constructs decharged profiles, thus establishing
PoS and PoA matching our lower bounds for general cost functions. When the class of cost
functions is restricted to be either concave or convex, we finally show a drastic improvement of
PoS and PoA. Note that the protocols used for the positive results also fulfill the separability
requirement from [1], i.e. when assigning the cost shares on a given facility, the protocol has no
information about the load on other facilities. Our characterization of Nash equilibria using the
notion of decharged profiles strictly generalizes a characterization introduced in our previous
paper [4]. While in [4] we assumed symmetric strategy spaces, i.e., the same strategies are
available to each player, we allow in this work player-specific strategy spaces and, additionally,
individual transport cost for each player and resource. The results in comparison to those
obtained in [4] are summarized in Table 1.

Related Work. Cost sharing approaches to facility location problems and network design
problems were analyzed in [2, 3]. In these works it is only required that the total cost shares
cover (approximately) total cost as the players pay for the service of being connected. In
contrast in our work, we require the stricter notion that the cost of every individual resource
is paid for by the players using it. Closer to the model in this paper are [1], which deals with
cost sharing in network games assuming constant costs.

2 General Cost Functions

Characterizing Pure Nash Equilibria. The characterization of Nash equilibria will help
to identify (cheap) strategy profiles around which we build our protocols.

Theorem 2.1. Given a facility location game, a strategy profile x can be a PNE if and only
if it is decharged, that is

1. Each player i is willing to pay the transport cost ti,xi:

ti,xi ≤ min
r∈M

(cr(r, x−i) + ti,r). (D1)

2. The users Nr(x) of each facility r, after having paid their transport cost, are willing to

100

share the cost of the facility:

cr(x) ≤
∑

i∈Nr(x)

min
s∈M

(cs(s, x−i) + ti,s)− ti,r. (D2)

Proof. A simple calculation shows it follows directly from the Nash condition that any PNE x
is decharged. To prove that any decharged profile x can be a PNE, we define the x-enforcing
cost sharing protocol. Its intuition is that in x, the cost of each facility is shared among
the users proportional to their cheapest alternatives less the transport cost and that singly
deviating players pay the entire cost.

Definition 2.2 (x-Enforcing Protocol). Given a facility location model (N,M, d, t, c), define
for any profile z and resource r the set of foreign players N1

r (z) := Nr(z)\Nr(x) and assign
for all i ∈ N the cost share functions

ξi(z) :=

min
r∈M

(cr(r, x−i) + ti,r)− ti,xi∑
j∈Nxi (x)

min
r∈M

(cr(r, x−j) + tj,r)− tj,xi

· cxi(x),

if Nxi(z) = Nxi(x) and cxi(x) > 0,

czi(z), if N1
zi(z) 6= ∅ and i = minN1

zi(z),

czi(z), if N1
zi(z) = ∅, Nzi(z) ⊂ Nzi(x) and i = minNzi(z),

0, else.

To establish that x is a PNE, observe that no player can improve by unilaterally changing
his strategy, because in that case he would pay the entire cost of the resource which by (D2)
is more expensive (incl. transport cost) than his cost share in x.

An Optimal Protocol for the Price of Stability. Theorem 2.1 and the x-enforcing
protocol reduce the Price of Stability question to finding (if existent) a cheap decharged strategy
profile. We present an algorithm that ’decharges’ any strategy profile, increasing the cost in
the process by at most a factor Hn =

∑n
i=1

1
i .

Theorem 2.3. Every facility location model has decharged strategy profile x at cost C(x) ≤
Hn · C(y), where y is the cost-optimal strategy profile.

Proof. Algorithm 1 returns for every instance (N,M, d, t, c) and input profile y a decharged
profile x that costs no more than Hn · C(y).

Algorithm 1 Find decharged profile x

Input: Facility location model (N,M, d, t, c), profile y
1: while current strategy profile has charged facilities do
2: pick a certain player on the most expensive charged resource r
3: move this player to the cheapest alternative, leaving the remainder of the profile as is
4: end while

Output: Decharged profile x

The key to the algorithm’s performance is to move the players in the right order. Doing so,
we can guarantee that after a number of loops, the cost of the strategy profile strictly decreases
with every loop. Hence, the algorithm terminates. Also, the first loops increase the cost of the
profile by at most a factor of Hn, such that C(x) ≤ Hn · C(y).

101

An Optimal Protocol for the Price of Anarchy. The Price of Anarchy measures the cost
of the most expensive Nash equilibrium. A simple instance (not included in this abstract) where
the optimal strategy profile costs 1 and some other profile with cost n is a Nash equilibrium
under any budget-balanced protocol shows that the Price of Anarchy is at least n. The x-
enforcing protocol matches this lower bound.

Theorem 2.4. The Price of Anarchy for cost sharing in facility location games is at most n.

Proof. Given a facility location model, let x be the decharged strategy profile returned by
Algorithm 1 with the optimal profile as input. Then, the x-enforcing protocol induces a game
where the most expensive Nash equilibrium costs at most n times as much as the optimal
profile.

3 Concave and Convex Costs

Restricting the class of cost functions allows to design highly efficient protocols.

Theorem 3.1. For concave cost functions, an optimal strategy profile is decharged, thus, the
price of stability is one by Theorem 2.1.

For convex cost functions, we introduce the the opt-enforcing protocol.

Definition 3.2 (opt-enforcing protocol). Given a facility location model (N,M, d, t, c), choose
some optimal profile y and assign for all i ∈ N the cost share functions

ξi(z) :=

di ·
czi(z)

`zi(z)
, if Nzi(z) ⊆ Nzi(y)

czi(z), if Nzi(z) 6⊆ Nzi(y) and i = min (Nzi(z) \Nzi(y))

0, else.

In a game induced by this protocol, a profile is a Nash equilibrium if and only if it is socially
optimal. Hence, the Price of Stability and the Price of Anarchy for games with convex cost
functions is 1.

References

[1] H.-L. Chen, T. Roughgarden, and G. Valiant. Designing network protocols for good equi-
libria. SIAM J. Comput., 39(5):1799–1832, 2010.

[2] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. A group-strategyproof cost
sharing mechanism for the steiner forest game. SIAM J. Comput., 37(5):1319–1341, 2008.

[3] M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In
FOCS, pages 584–593, 2003.

[4] P. von Falkenhausen and T. Harks. Optimal cost sharing for resource selection games.
Mathematics of Operations Research, 38(1):184–208, February 2013.

102

Exact and heuristic algorithms for the
green vehicle routing problem

Ángel Felipe Ortega1, M. Teresa Ortuño Sánchez1, Gregorio Tirado
Domı́nguez1, and Giovanni Righini2

1Departamento de Estad́ıstica e Investigación Operativa, Universidad Complutense de Madrid
2Università degli Studi di Milano

1 The Green VRP

We consider a variation of the vehicle routing problem (VRP), where the fleet is made of
electrical vehicles. The main distinguishing feature of this model is the need for frequent
recharge. Electrical vehicles have limited autonomy: therefore a vehicle may need to recharge
its batteries in order to be able to serve all the customers assigned to its route. This means
that the computation of an optimal set of routes must also take into account the problem of
deciding where and when to recharge each vehicle and how much. A battery recharge operation
can be done in different ways with different technologies, implying different recharging time
and cost. We also take into account the option of partial recharge that may be useful to save
time in order to satisfy maximum route duration especially by the end of a route. On the
other hand we assume that all vehicles start will fully charged batteries, because it is common
to recharge electric vehicles during the night and because today technology already allows to
do it with normal power supply means provided that enough time is available.

Our work elaborates on a paper by Erdogan and Miller-Hooks [1] where the problem was
proposed under the name of Green VRP and tackled by a heuristic algorithm. We generalize
the model presented in [1] by also considering (a) the possibility of partial recharge, (b) the
availability of different recharge technologies, (c) the cost due to battery amortization.

The green vehicle routing problem (GVRP) can be formulated as follows. Let G = (N∪R,A)
be a given weighted undirected graph whose vertex set is the union of a set N of customers and
a set R of points of recharge. One distinguished point of recharge in R is the depot, numbered
0, where vehicle routes start and terminate.

All customer vertices in N must be visited by a single vehicle; split delivery is not allowed.
Each customer i ∈ N is characterized by a demand qi (expressed in kilograms).

Vertices in R can be visited at any time if needed. Multiple visits to them is allowed
(also simultaneously) and partial recharge is also allowed. We consider a set H of different
technologies for battery recharge. For each technology h ∈ H we assume a given recharge speed
ρh (expressed in Watthour per minute), and a given recharge unit cost γh (expressed in Euro
per Watthour).

For notational convenience in the remainder we assume to split each recharge station into as
many copies as the number of different recharge technologies available. The copies of a same

103

station are not connected with each other, so that no feasible solution is allowed to include
a recharge partially made with two ore more technologies during the same visit at the same
station. Therefore we can associate technologies with stations and we can replace index h ∈ H
with index i ∈ R accordingly.

All vertices i ∈ R∪N are also characterized by a service time si (expressed in minutes). In
the case of customer vertices it represents the time taken by delivery operations; in the case
of recharge vertices it represents a fixed time to be spent to set up the recharge operations,
independent of the amount of recharge.

Non-negative coefficients da and va are associated with each edge a ∈ A, representing respec-
tively the distance (expressed in kilometers) and the average speed (expressed in km/minutes)
for traveling along a in either direction.

We consider a fleet made of V identical vehicles with given capacity Q (expressed in kilo-
grams), and equipped with batteries of capacity B (expressed in Watthour). The energy
consumption is assumed to be proportional to the distance traveled through a given coefficient
π (expressed in Watthour per kilometer). The duration of each route is required not to exceed
a given limit T (expressed in minutes) representing the duration of drivers’ work shifts.

A feasible route is a cycle complying with the following set of constraints:

• the route must include the depot;

• the overall amount of goods delivered along the route must not be larger than the vehicle
capacity Q; the amount of goods delivered is given by the sum of the demands qi of the
visited customers i ∈ N ;

• the total duration of the route must not exceed the total allowed duration T ; the route
duration is given by three terms:

– traveling time, i.e. the sum of the terms da
va

for each edge a ∈ A in the route;

– service time, i.e. the sum of the terms si for each vertex i ∈ N ∪ R visited along
the route;

– recharge time at the stations (which is a decision variable, owing to the possibility
of partial recharge);

• the level of battery charge must be kept between 0 and B at any time, taking into account
that:

– whenever the vehicle travels along edge a ∈ A the associated energy consumption
is given by πda;

– the amount of energy recharged at any station i ∈ R is given by ρi times the variable
recharge time at i ∈ R.

A set of feasible routes is a feasible solution if all customers are visited once and no more than
V vehicles are used.

The objective to be optimized is given by the overall recharge cost, consisting of a fixed cost
and a variable cost. Since batteries allow for a limited number of recharge cycles during their
operational life, we associate a fixed cost with each recharge operation; this cost, indicated by
f (expressed in Euro), is given by the cost of a battery divided by the estimated number of
recharge cycles after which it must be replaced. The variable cost associated with a recharge

104

operation at any station i ∈ R is proportional to the amount of energy stored, but it also
depends on the recharge technology through the coefficient γi.

In the talk we outline some observations on key properties of the problem. Then we present
two reformulations, indicated by A and B, that can be solved with column generation. The two
master problems are equivalent in the space of their discrete variables, but the linear relaxation
of master problem B is a relaxation of the linear relaxation of master problem A. Hence column
generation with formulation B is likely to be faster than with formulation A and in general it
provides a looser lower bound.

2 Formulation A

Formulation A is based on routes, i.e. cycles including the depot. We indicate with Ω the set
of all feasible routes. We associate a binary variable xr with each feasible route r ∈ Ω: xr
takes value 1 if and only if route r is selected to be part of the solution. Binary coefficients yir
take value 1 if and only if customer i ∈ N is visited along route r ∈ Ω. We indicate by cr the
cost of each route r ∈ Ω.

With these definitions and notation we obtain the following integer linear programming
model:

minimize
∑

r∈Ω

crxr (1)

s.t.
∑

r∈Ω

yirxr ≥ 1 ∀i ∈ N (2)

∑

r∈Ω

xr ≤ V (3)

xr ∈ {0, 1} ∀r ∈ Ω. (4)

3 Formulation B

Formulation B is based on legs, i.e. sequences of customers visited by the same vehicle between
two recharge stations (including the depot). We indicate with Λ the set of all feasible legs and
with Λ[u,v] the set of all feasible legs between nodes u ∈ R and v ∈ R.

Formulation B can be interpreted as the problem of selecting a suitable set of edges on a
symmetric graph M with a vertex subset for each recharge station (including the depot) and
a weighted edge for each leg. The graph does not include self-loops, i.e. a leg cannot start
and end at the same station. We assume that each station corresponds to many coincident
vertices, representing different visits of the same vehicle to the same station, possibly using
different recharge technologies at each visit.

For each leg, that is for each column in the master problem, we also need some additional
information. Coefficients ql indicate the amount of goods picked-up/delivered along leg l.
Coefficients tl indicate the traveling and service time spent along leg l. Coefficients el indicate
the energy consumption along leg l. We indicate by cl the fixed cost at the depot for each leg
l ∈ Λ[u,v]. We associate a binary variable θlk with each feasible leg l ∈ Λ and each vehicle k: θlk
takes value 1 if and only if leg l is selected to be part of the solution and is assigned to vehicle
k. It is necessary to have as many copies of the leg variables as the number of different vehicles

105

in order not to allow capacities, time and energy to be traded between vehicles. Unfortunately
this introduces symmetry, i.e. dual degeneracy, in the master problem.

The master problem of Formulation B reads as follows.

minimize
∑

l∈Λ

∑

k

clθlk +
∑

k

∑

u∈R
γuδuk (5)

s.t.
∑

v∈R\{u}

∑

l∈Λ[u,v]

θlk = 2ωuk ∀u ∈ R,∀k (6)

ω0k = 1 ∀k (7)

S.E.C. (8)
∑

k

∑

l∈Λ

yliθlk ≥ 1 ∀i ∈ N (9)

∑

l∈Λ

qlθlk ≤ Q ∀k (10)

∑

l∈Λ

tlθlk +
∑

u∈R

δuk
ρu
≤ T ∀k (11)

δuk ≤ Bωuk ∀u ∈ R,∀k (12)

δuk ≥
∑

v∈R

∑

l∈Λ[u,v]

elθlk −B ∀u ∈ R,∀k (13)

δuk + δvk ≤ 2B − (B − el)θlk ∀u, v ∈ R, ∀l ∈ Λ[u,v]∀k (14)
∑

u∈R
δuk ≥

∑

l∈Λ

elθlk ∀k (15)

δuk ≥ 0 ∀u ∈ R,∀k (16)

θlk ∈ {0, 1} ∀l ∈ Λ,∀k (17)

ωuk ∈ {0, 1} ∀u ∈ R,∀k. (18)

The main problem with this formulation comes from (i) multiple visits of the same vehicle
to the same station and (ii) multiple use of the same (empty) leg between two stations by the
same vehicle.

In order to allow for multiple visits ωuk of a same vehicle to a same station, it is necessary
to duplicate each station into many vertices. In this way it is possible to impose degree 2 to
each visited vertex with constraints (6); moreover constraints (13) are necessary and sufficient
to correctly define feasible solutions. Unfortunately this would imply an enormous increase in
the size of the master problem as well as a high degree of symmetry in it. If s distinct vertices
are used for each station, s2 distinct leg variables must be used for each leg.

On the other hand if we allow for multiple visits to the same vertex, the same variable
δuk represents the overall amount of energy recharged by vehicle k at station u. In this case
however constraints (13) do not guarantee feasibility any longer, i.e. they are necessary but
not sufficient.

References

[1] S. Erdogan, E. Miller-Hooks, A Green Vehicle Routing Problem, Transportation Research
Part E 48 (2012) 100-14

106

Fooling-sets and rank in nonzero
characteristic

Mirjam Friesen1 and Dirk Oliver Theis2

1Faculty of Mathematics, Otto von Guericke University Magdeburg, Germany
2Faculty of Mathematics and Computer Science, University of Tartu, Estonia

1 Introduction

An n× n matrix M over some field k is called a fooling-set matrix of size n if

Mkk 6= 0 for all k (its diagonal entries are all nonzero), and (1a)

Mk,`M`,k = 0 for all k 6= `. (1b)

Note that the definition depends only on the zero-nonzero pattern of M .
In Communication Complexity and Combinatorial Optimization, one is interested in finding

a large fooling-set (sub-)matrix contained in a given matrix (permutation of rows and columns
is allowed), and in upper-bounding the size of a fooling-set matrix one may hope for in terms
of easily computable properties of the given matrix. (The complexity status of the decision
problem for fooling-set submatrix containment is open; it is however equivalent to finding a
large clique in a certain type of graphs).

Dietzfelbinger, Hromkovič, and Schnitger ([3, Thm. 1.4], or see [10, Lemma 4.15]; cf. [8, 4])
shows that the rank of a fooling-set matrix of size n is at most

√
n, i.e.,

n ≤ (rkkM)2. (2)

This inequality gives such an upper bound on the largest fooling-set submatrix in terms of the
easily computable rank.

However, it is an open question whether the exponent on the rank in the right-hand side
of (2) can be improved or not. Dietzfelbinger et al. [3, Open Problem 2] specifically asked this
question for 0/1-matrices, which where of particular interest in Communication Complexity
at that time. Klauck and de Wolf [8] have pointed out the importance for Communication
Complexity of the question regarding general matrices.

Currently, the examples (attributed to M. Hühne in [3]) of 0/1 fooling-set matrices M with
lowest rank are such that n ≈ (rkQM)log4 6 (log4 6 = 1.292 . . .); for general matrices, Klauck
and de Wolf [8] have given examples with n ≈ (rkQ S)log3 6 (log3 6 = 1.63 . . .).

In our paper, we settle the question for fields k of nonzero characteristic p. For a
prime number p, we denote by Fp the finite field with p elements. We will prove the following.

107

Theorem 1.1. For every prime number p, there is a family of fooling-set matrices
(M (t))t=1,2,3,... of size n(t) over Fp, with n(t) →∞, which have the property

n(t)

(rkFp M
(t))2

−→ 1,

In other words, inequality (2) is tight if the characteristic of k is nonzero. It is particularly
striking that not only is the exponent on the rank in inequality (2) best possible, but so is the
constant (one) in front of the rank.

We note that, for characteristic p > 2, Dietzfelbinger et al.’s original question regarding
0/1-matrices remains open.

Organization of this extended abstract. In the remainder of this section we will explain
some of the connections of the fooling-set vs. rank problem with Combinatorial Optimization
and Graph Theory concepts. In Section 2, we will sketch the construction of the matrices M (t).
While the rank-bound is easily verified, for the proof that these matrices are indeed fooling-set
matrices, we refer to the full paper [5]. In the final section, we point to some questions which
remain open.

1.1 Fooling-set matrices in other areas

While being of interest in their own right in as a minimum-rank type problem in Combinatorial
Matrix Theory, fooling-set matrices are connected to other areas of Mathematics and Computer
Science.

In Polytope Theory, given a polytope P , sizes of fooling-set submatrices of appropriately
defined matrices provide lower bounds to the number of facets of any polytope Q which can be
mapped onto P by a projective mapping ([13], cf. [4]). Similarly, in Combinatorial Optimiza-
tion, sizes of fooling-set matrices are lower bounds to the minimum sizes of Linear Programs for
combinatorial optimization problems ([13]). For example, it is an open question whether Ed-
mond’s matching polytope for a complete graph on n vertices admits a fooling-set matrix whose
size grows quicker in n than the dimension of the polytope. Such a fooling-set matrix would
yield a fairly spectacular improvement on the currently known lower bounds of sizes of Linear
Programming formulations for the matching problem. See [4] for bounds based on fooling sets
for a number of combinatorial optimization problems, including Bipartite Matching.

In the Polytope Theory / Combinatorial Optimization applications, we typically have k = Q,
and the rank of the large matrix A is known. However, since the definition of a fooling-set
matrix depends only on the zero-nonzero pattern, changing the field from Q to k′ and replacing
the nonzero rational entries of A by nonzero numbers in k′ may yield a different rank and hence
a different upper bound on the size of a fooling-set matrix.

In Computational Complexity, fooling-set matrices provide lower bounds for the com-
munication complexity of Boolean functions (see, e.g., [10, 11, 3, 8]), and for the number of
states of an automaton accepting a given language (e.g., [6]).

108

In Graph Theory, a fooling-set matrix (up to permutation of rows and columns) can be
understood as the incidence matrix of a cross-free matching. Recall that a cross-free matching
of size n is a bipartite graph H where each of the two sets in the bipartition contains n vertices
and such that there is a perfect matching between the two sets which is cross-free, i.e., no two
matching edges induce a C4 subgraph in H.

Cross-free matchings are best known as a lower bound on the size of biclique coverings
of graphs (e.g. [2, 7]). A biclique covering of a graph G is a collection of complete bipartite
subgraphs ofG such that each edge ofG is contained in at least one of these bipartite subgraphs.
If a cross-free matching of size n is contained as a subgraph in G, then at least n bicliques are
needed to cover all edges of G. (For some classes of graphs, this is a sharp lower bound on the
biclique covering number [2, 12]).

In Matrix Theory, the maximum size of a fooling-set sub-matrix is known under a couple
of different names, e.g. as independence number [1, Lemma 2.4]), or as the intersection number.
For some semirings, this number provides a lower bound for the so-called factorization rank of
the matrix over the semiring.

In each of these areas, fooling-set matrices are used as lower bounds. Upon embarking
on a search for a big fooling-set matrix in a large, complicated matrix A, one is interested in
an a priori upper bound on their sizes and thus the potential usefulness of the lower bound
method.

2 Construction of the matrices

We now describe the construction of our matrices. Let p be a prime number and r ≥ 2 an
integer. Define the function f : Z→ Fp by the recurrence relation

f(k + r) = −f(k)− f(k + 1) for all k ∈ Z (3a)

and the initial conditions

f(0) = 1, and f(1) = . . . = f(r − 1) = 0. (3b)

Fix an integer n > r. From the sequence, we define an (n × n)-matrix as follows. For ease
of notation, the matrix indices are taken to be in {0, . . . , n− 1} × {0, . . . , n− 1}. We let

Mk,` = f(k − `). (4)

It is fairly easy to see that rkS ≤ r.

Lemma 2.1. The rank of S is at most r.

Proof. From (3a), for k ≥ r, we deduce the equation Mk,· = −Mk−r,· −Mk−r+1,·. Hence, each
of the rows Mk,·, k ≥ r, is a linear combination of the first r rows of S.

It can be seen that the rank is, in fact, equal to r: The top-left r × r sub-matrix is regular
because it is upper-triangular with non-zeros along the diagonal.

Next, we just reduce the fooling-set property (1) to a property of the function f .

109

Lemma 2.2. If
f(k)f(−k) = 0 for all k ∈ {1, . . . , n− 1} (5)

then M is a fooling-set matrix.

Proof. It is clear from (3b) and (4) that Mj,j = f(0) = 1 for all j = 0, . . . , n− 1, so it remains
to verify (1b). Since

Mi,jMj,i = f(i− j)f(j − i) = f(i− j)f(−(i− j)),

if f(k)f(−k) = 0 for all k = 1, . . . , n−1, then Mi,jMj,i is zero whenever i 6= j. This proves (1b).

Given appropriate conditions on r and n (depending on p), this condition on f can indeed
be verified. For the details, we refer to the full paper [5]. At this point, suffice it to say that,
for a given positive integer t, in the notation of Theorem 1.1, we have

n = n(t) = pt(pt + 1) + 1.

3 Conclusion

Dietzfelbinger et al.’s original question regarding the tightness of inequality (2) for 0/1-matrices
remains open in characteristic p > 2. For these matrices, it may still be possible that the
exponent on the rank in the inequality (2) can be improved.

For characteristic zero, Klauck and de Wolf [8] have given examples of fooling-set matrices
of size 6k together with {0,±1}-matrices of rank 3k with the same support (k = 1, 2, 3, . . .).
Thus, the exponent on the rank in inequality (2) with k := Q for general matrices is at least
log3 6 = 1.63 . . . , while the best known bound for 0/1-matrices is log4 6 = 1.292

We would like to point out the possibility that, in characteristic zero, the minimum possible
rank on the right hand side of inequality (2) may depend not only on the characteristic, but on
the field k itself. Indeed, there are examples of zero-nonzero patterns for which the minimum
rank of a matrix with that zero-nonzero pattern differs between k = Q and k = R, see e.g. [9].
Hence, for characteristic zero, we ask the following weaker version of Dietzfelbinger et al.’s
question.

Question 3.1. Is there a field k (of characteristic zero) over which the fooling-set matrix size
vs. rank inequality in (2) can be improved?

As mentioned in the introduction, another problem in characteristic zero comes from poly-
tope theory. Let P be a polytope. Let A be a matrix whose rows are indexed by the facets of P
and whose columns are indexed by the vertices of P , and which satisfies AF,v = 0, if v ∈ F ,
and AF,v 6= 0, if v /∈ F . For any fooling-set submatrix of size n of A, the following inequality
follows from (2) (cf. [4]):

n ≤ (dimP + 1)2. (6)

The following variant of Dietzfelbinger et al.’s question is thus of pertinence in polytope theory
and combinatorial optimization.

Question 3.2. Can the fooling-set size vs. dimension inequality (6) be improved (for poly-
topes)?

110

To our knowledge, the best known lower bound for the best possible exponent on the dimen-
sion in inequality (6) is 1. Finally, the following conjecture is, to the best of our knowledge,
still open.

Conjecture 3.3. The Fooling-Set-Submatrix problem
Input: Integers n,m and m×m 0/1-matrix A
Output: “Yes”, if a fooling-set submatrix of size n of A exists,

“No” otherwise.
is NP-hard.

References

[1] Joel E. Cohen and Uriel G. Rothblum, Nonnegative ranks, decompositions, and factorizations of
nonnegative matrices, Linear Algebra Appl. 190 (1993), 149–168. MR 1230356 (94i:15015)

[2] Milind Dawande, A notion of cross-perfect bipartite graphs, Inform. Process. Lett. 88 (2003), no. 4,
143–147. MR 2009283 (2004g:05118)

[3] Martin Dietzfelbinger, Juraj Hromkovič, and Georg Schnitger, A comparison of two lower-bound
methods for communication complexity, Theoret. Comput. Sci. 168 (1996), no. 1, 39–51, 19th
International Symposium on Mathematical Foundations of Computer Science (Košice, 1994). MR
1424992 (98a:68068)

[4] Samuel Fiorini, Volker Kaibel, Kanstantin Pashkovich, and Dirk Oliver Theis, Combinatorial
bounds on nonnegative rank and extended formulations, arXiv:1111.0444) (to appear in Discrete
Math.), 2013+.

[5] Mirjam Friesen and Dirk Oliver Theis, Fooling sets (aka cross-free matchings) and rank in nonzero
characteristic, arXiv:1208.2920, 2012+.

[6] Hermann Gruber and Markus Holzer, Finding lower bounds for nondeterministic state complexity
is hard (extended abstract), Developments in language theory, Lecture Notes in Comput. Sci., vol.
4036, Springer, Berlin, 2006, pp. 363–374. MR 2334484

[7] S. Jukna and A. S. Kulikov, On covering graphs by complete bipartite subgraphs, Discrete Math.
309 (2009), no. 10, 3399–3403. MR 2526759 (2010h:05231)

[8] Hartmut Klauck and Ronald de Wolf, Fooling one-sided quantum protocols, arXiv:1204.4619, 2012.

[9] Swastik Kopparty and K. P. S. Bhaskara Rao, The minimum rank problem: a counterexample,
Linear Algebra Appl. 428 (2008), no. 7, 1761–1765. MR 2388655 (2009a:15002)

[10] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge University Press, Cam-
bridge, 1997. MR 1426129 (98c:68074)

[11] L. Lovász and M. Saks, Möbius functions and communication complexity, Proc. 29th IEEE FOCS,
IEEE, 1988, pp. 81–90.

[12] José A. Soto and Claudio Telha, Jump number of two-directional orthogonal ray graphs, Integer
programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 6655, Springer,
Heidelberg, 2011, pp. 389–403. MR 2820923 (2012j:05305)

[13] Mihalis Yannakakis, Expressing combinatorial optimization problems by linear programs, J. Com-
put. System Sci. 43 (1991), no. 3, 441–466. MR 1135472 (93a:90054)

111

Coloring of Paths into Forests ∗

Giulia Galbiati1 and Stefano Gualandi2

1Department of Industrial and System Engineering, University of Pavia, Italy
2Department of Mathematics, University of Pavia, Italy

1 The problem

We present a new path coloring problem that naturally comes into play when optimization
problems that arise in the context of the Multiple Spanning Tree Protocol are solved us-
ing a Column Generation approach. Network routing protocols based on a single spanning tree
have several limitations in terms of robustness and fairness, whereas those based on multiple
trees allow to better distribute the demands within the network and mitigate such limitations.
In [4] routing problems under the Multiple Spanning Tree Protocol are presented as Integer
Linear Programs and are solved using a Column Generation approach. The approach leads to
solve a subproblem equivalent to the path coloring problem that is the subject of this paper
and that we now present.

In graph theory path coloring usually refers to the problem of finding, given a graph and
a collection of vertex pairs, a set of paths connecting each pair and a coloring of these paths
in such a way that any two paths that share an edge receive different colors. We need here a
different notion of path coloring.

A path k-forest coloring of a set P of paths of a graph G = (V,E) is a coloring of the paths
with at most k colors so that paths with the same color form a forest of G. If paths with
the same color share an edge we intend that no monochromatic cycle is formed. This coloring
partitions P into at most k disjoint sets, each set containing paths that do not form cycles
in G.

The problem that we study is the path k-forest coloring problem (Path-k-Forest-Color),
whose instances consist of an undirected graph G = (V,E) and a set P of paths of G and the
question is whether there exists a path k-forest coloring of P .

We prove in Theorem 2.1 that Path-2-Forest-Color is NP-complete and in Theorem
2.3 that Path-k-Forest-Color is NP-complete for each k ≥ 3, hence showing that Path-
k-Forest-Color is NP-complete for each k ≥ 2, and that coloring a set of paths of an
undirected graph G with a minimum number of colors so that paths with the same color form
a forest of G is NP-hard.

We note that both theorems are proved in the restricted case where the length of any path
in P is at most 2. If set P does instead contain only paths of lenght 1, then the problem, which
we may call in this case Edge-k-Forest-Color, is known to be solvable in polynomial time
since it is a partition problem of a graphic matroid. Using matroid techniques [2] one can find

∗We began investigating this topic together with Francesco Maffioli. His sudden and premature death has
deprived us of his enthusiasm and support. His memory will remain in our hearts and with all those who
had the fortune of knowing him.

113

in polynomial time a partition of the edges of the graph into a minimum number of forests, a
number known as the arboricity of the graph. However, it has recently been proved in [1] that
partitioning the edges of a graph into a minimum number of trees (call the recognition form
of this problem Edge-k-Tree-Color) is instead NP-hard. This shows that the request of
connectivity of the elements of the partition of the edges does make a difference and increases
the complexity of the problem.

Therefore the results obtained here with paths of length at most 2 are tight, showing that in
this case even if the connectivity of the elements of the partition is not requested the problem
is NP-hard.

Of course it would be important to find interesting cases where Path-k-Forest-Color
can be solved in polynomial time. When k = 2, G is a grid and all paths are of length at most
2, the problem is trivially solvable in polynomial time.

In Corollary 2.2 and Corollary 2.4 we present instead other hardness results for the problem
formulated on planar graphs, always with P consisting of paths of length at most 2. The
first result is for Path-3-Forest-Color, the second for Path-2-Tree-Color, where with
the name Path-k-Tree-Color we refer to the Path-k-Forest-Color problem with the
additional request that the paths in any element of the partition form a tree of G.

2 The results

In this section we present two theorems and two corollaries. The first theorem uses a reduction
from the well-known NP-complete [3] Not-All-Equal-3Sat problem, whose instances con-
sist of a set U = {x1, . . . , xn} of boolean variables, a collection C = {c1, . . . , cm} of clauses over
U , with each clause having exactly 3 literals, a literal being a variable or a negated variable.
The problem asks whether there exists a satisfying truth assignment for U such that each
clause in C has at least one true literal and one false literal.

Theorem 2.1. Path-2-Forest-Color is NP-complete even when P consists of paths of
length at most 2.

Proof. The reduction that we now describe, from Not-All-Equal-3Sat to Path-2-Forest-
Color, is illustrated in Figure 1 on a particular instance. We let this reduction use paths of
length up to 4. At the end of the proof we will show that any path of length greater than 2
can be replaced by a set of paths of length 2 without altering the conclusions of the proof.

Given an instance I of Not-All-Equal-3Sat, in the corresponding instance I
′

of Path-
2-Forest-Color graph G = (V,E) has V containing three nodes zi, yi, ti, for each i ∈
{1, . . . , n}, and nine nodes for each clause, three nodes “labelled” with the literals l1, l2, l3
of the clause and six “inner” nodes. The inner nodes, say a1, b1, a2, b2, a3, b3 are connected
in a cycle, and nodes ai, bi are adjacent to li, i = 1, . . . , 3. Moreover set E contains, for
each i ∈ {1, . . . , n}, three edges between the three vertices zi, yi, zi and an edge between ti
and every vertex labelled xi or xi. The set P contains 9 paths for each clause; precisely, if
variable xi appears unnegated (resp., negated) in clause c where it represents label lj , then
P contains the paths {{zi, yi}, {yi, ti}, {ti, xi}, {xi, aj}} and {{zi, yi}, {yi, ti}, {ti, xi}, {xi, bj}}
(resp., {{zi, ti}, {ti, xi}}, {xi, aj}} and {{zi, ti}, {ti, xi}}, {xi, bj}}). For each clause, set P also
contains the three “inner” paths of length 2, i.e. {{a1, b1}, {b1, a2}}, {{a2, b2}, {b2, a3}} and
{{a3, b3}, {b3, a1}}. Finally, P contains, for each i ∈ {1, . . . , n}, the paths {zi, ti} of length 1
and the paths {{zi, yi}, {yi, ti}} of length 2. Now if there exists a satisfying truth assignment

114

for U such that each clause in C has at least one true and one false literal, consider a coloring
of the paths that sets to blue (resp., red) all paths reaching inner vertices passing through a
vertex corresponding to a literal set to true (resp., to false) by the assignment. Moreover color
the paths {{zi, yi}, {yi, ti}} and {zi, ti} blue and red (resp., red and blue) if variable xi is set
true (resp., false) in U , for each i ∈ {1, . . . , n}. The inner paths are colored in the only way
that makes it possible to avoid monochromatic cycles in G. It is straightforward to see that
all paths having the same color form a forest of G. Conversely if all paths in P can be colored
with two colors so that paths with the same color do not form cycles in G, notice that all paths
reaching nodes labelled with the same literal, say xi wlog, must have the same color, other-
wise a monochromatic cycle would arise coloring either path {zi, ti} or path {{zi, yi}, {yi, ti}}.
Notice also that, for each clause, the three inner paths cannot use the same color since this
would create a monochromatic cycle and therefore the 6 paths reaching the inner nodes nodes
cannot be monochromatic. Hence if we set to true the literals reached via blue paths and to
false the remaining ones, the corresponding assignment for U satisfies all clauses, each clause
having at least one true and one false literal.

z
2

y
2

z
3

y
3

y
1

z
1

t
1 t

3

t
2

x
2

b
2

a
2

x
2

b
2

a
2

x
2

b
2

a
3

b
1

a
3

b
1

a
3

b
1

a
2

x
1

x
3

a
1

b
3

x
3

a
1

b
3

x
3

a
1

b
3

x
1

x
1

Fig 1. Graph G corresponding to an instance of Not-All-Equal-3Sat
having C = {{x1 ∨ x2 ∨ x3}, {x1 ∨ x2 ∨ x3}, {x1 ∨ x2 ∨ x3}}

and a path-2-forest coloring corresponding to the assignment {1, 1, 0}.
In order to conclude the proof we must show that any path p of P of length 3 or 4 can be

replaced by a set of paths of length 2 without altering the conclusions of the proof. Let l ≥ 3 be
the length of p and let q0, q1, . . . , ql be the vertices on this path. In the reduction replace p by
the paths {{qi, qi+1}, {qi+1, qi+2}}, i = 0, . . . , l − 2 and the paths {{qi+1, wi+1}, {wi+1, qi+2}},
i = 0, . . . , l− 3, with the wj being new vertices. See Figure 2 for an example of path of length
4. It is easy to see that, among these paths, those that do not touch any vertex wj must
be colored with the same color in order to avoid monochromatic cycles and therefore they
can be used together for reaching the same conclusions that the color of path p would have
implied.

w
1

w
2

q
0

q
1

q
3

q
4

q
2

Fig 2
If in the reduction of Theorem 2.1 we contract all vertices ti, i = 1, . . . , n into a unique node,

115

say t0, then the resulting graph is planar and every set of paths with the same color forms a
tree in G. Hence the following holds.

Corollary 2.2. Path-2-Tree-Color is NP-complete on planar graphs even when P consists
of paths of length at most 2.

Before addressing the next theorem we observe that Edge-2-Tree-Color has recently
been addressed and proved NP-complete on general graphs in [1]; unfortunately, the proof in
[1] does not extend to planar graphs and, to our knowledge, the complexity of Edge-2-Tree-
Color on planar graphs is unknown. If Edge-2-Tree-Color were solvable in polynomial
time, then the result in Corollary 2.2 would be tight.

Theorem 2.3. Path-k-Forest-Color is NP-complete for every k ≥ 3 even when P consists
of paths of length at most 2.

Proof. (Sketch of) We reduce from Vertex-k-Color, a problem asking whether or not the
vertices of an undirected graph G can be colored with k colors so that adjacent vertices receive
different colors. This problem is NP-complete [3] for k ≥ 3. As in the preceding theorem we
let the reduction use paths of length 3 but they could be replaced by paths of length 2. Let
G = (V = {1, . . . , n}, E) be an instance of this problem. For each vertex u of G we add to G
a vertex xu and k − 1 vertices {y1, . . . , yk−1}; we also add the edges {xu, yi}, {yi, u}, for each
i = 1, . . . , k − 1 and the edge {xu, u}. For each edge e = {u, v} of G we add to G a vertex
xu,v and the edges from this vertex to u and v. The set P of paths is defined as follows. For
each vertex u ∈ V it includes the paths {{xu, yi}, {yi, u}}, for each i = 1, . . . , k − 1 and for
each vertex v ∈ V adjacent to u it includes the path {{xu, u}, {u, xu,v}, {xu,v, v}} if u < v,
and the path {{xu, u}, {u, v}} otherwise. Now, given a vertex k-coloring that assigns color c
to vertex u we obtain a path k-forest-coloring by assigning color c to all paths that issue from
xu and end in a vertex of V − {u} and by assigning the remaining k − 1 colors to the k − 1
paths that issue from xu and end in u. Conversely, given a path k-coloring, we observe that all
paths that issue from xu and end in a vertex of V − {u} must have the same color, otherwise
a monochromatic cycle would arise among the k − 1 paths that issue from xu and end in u.
This induces an obvious vertex k-coloring.

Since Vertex 3-Color is NP-complete on planar graphs [3] and the reduction in Theorem
2.3 preserves the planarity of the graph the following holds.

Corollary 2.4. Path-3-Forest-Color is NP-complete even on planar graphs and with P
consisting of paths of length at most 2.

References

[1] T Biedl and F Brandenburg. Partitions of graphs into trees. In Graph Drawing, vol LNCS
4372, pages 430–439. Springer, 2007.

[2] H N Gabow and H H Westermann. Forests, frames, and games: algorithms for matroid
sums and applications. Algorithmica, 7(1):465–497, 1992.

[3] M R Gary and David S Johnson. Computers and intractability: A guide to the theory of
NP-completeness, 1979.

[4] F Maffioli G Galbiati, S Gualandi. Routing with multiple spanning tree protocol: A column
generation approach with partition of paths into forests, 2013. Submitted.

116

A linear kernel for planar
red-blue dominating set ∗

Valentin Garnero1, Ignasi Sau1, and Dimitrios M. Thilikos1,2

1AlGCo project-team, CNRS, LIRMM, Montpellier, France.
2Department of Mathematics, National & Kapodistrian University of Athens, Greece.

In the Red-Blue Dominating Set problem, we are given a bipartite graph
G = (VB ∪ VR, E) and an integer k, and asked whether G has a subset D ⊆ VB of
at most k ‘blue’ vertices such that each ‘red’ vertex from VR is adjacent to a vertex
in D. We provide the first explicit linear kernel for this problem on planar graphs.

Keywords: parameterized complexity, planar graphs, linear kernels, domination.

1 Introduction

The field of parameterized complexity (see [4]) deals with algorithms for decision problems
whose instances consist of a pair (x, k), where k is known as the parameter. A fundamental
concept in this area is that of kernelization. A kernelization algorithm, or kernel, for a param-
eterized problem takes an instance (x, k) of the problem and, in time polynomial in |x| + k,
outputs an equivalent instance (x′, k′) such that |x′|, k′ ≤ g(k) for some function g. The func-
tion g is called the size of the kernel and may be viewed as a measure of the “compressibility”
of a problem using polynomial-time preprocessing rules. A natural problem in this context is
to find polynomial or linear kernels for problems that admit such kernelization algorithms.

A celebrated result in this area is the linear kernel for Dominating Set on planar graphs
by Alber et al. [2], which gave rise to an explosion of (meta-)results on linear kernels on planar
graphs [8] and other sparse graph classes [3, 5, 9]. Although of great theoretical importance,
these meta-theorems have two important drawbacks from a practical point of view. On the one
hand, these results rely on a problem property called Finite Integer Index, which guarantees
the existence of a linear kernel, but it is still not yet clear how and when such a kernel can
be effectively constructed. On the other hand, at the price of generality one cannot hope that
general results of this type may directly provide explicit reduction rules and small constants
for particular graph problems.

In this article we follow this research avenue and focus on the Red-Blue Dominating Set
problem (RBDS for short) on planar graphs. In the Red-Blue Dominating Set problem,
we are given a bipartite graph G = (VB ∪ VR, E) and an integer k, and asked whether G has

∗This work was supported by the ANR project AGAPE (ANR-09-BLAN-0159) and the Languedoc-Roussillon
Project “Chercheur d’avenir” KERNEL. The third author was co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: “Thales.
Investing in knowledge society through the European Social Fund.

117

a subset D ⊆ VB of at most k ‘blue’ vertices such that each ‘red’ vertex from VR is adjacent
to a vertex in D. From a (classical) complexity point of view, finding a red-blue dominating
set of minimum size is NP-complete on planar graphs [1]. From a parameterized complexity
perspective, RBDS parameterized by the size of the solution is W [2]-complete on general
graphs and FPT on planar graphs [4].

The fact that RBDS involves a coloring of the vertices of the input graph makes it unclear
how to make the problem fit into the general frameworks of [3, 5, 8, 9]. In this article we
provide the first explicit (and quite simple) polynomial-time data reduction rules for Red-
Blue Dominating Set on planar graphs, which lead to a linear kernel for the problem.

Theorem 1. Red-Blue Dominating Set parameterized by the solution size has a linear
kernel on planar graphs. More precisely, there exists a poly-time algorithm that for each positive
planar instance (G, k) returns an equivalence instance (G′, k) such that |V (G′)| ≤ 48 · k.

This result complements several explicit linear kernels on planar graphs for other domination
problems such as Dominating Set [2], Edge Dominating Set [8], Efficient Dominating
Set [8], Connected Dominating Set [7, 11], or Total Dominating Set [6]. We stress
that our constant is considerable smaller than most of the constants provided by these results.
Since one can easily reduce the Face Cover problem on a planar graph to RBDS (without
changing the parameter)1, the result of Theorem 1 also provides a linear bikernel for Face
Cover (i.e., a polynomial-time algorithm that given an input of Face Cover, outputs an
equivalent instance of RBDS with a graph whose size is linear in k). To the best of our
knowledge, the best existing kernel for Face Cover is quadratic [10]. Our techniques are
much inspired from those of Alber et al. [2] for Dominating Set, although our reduction
rules and analysis are slightly simpler.

2 A linear kernel for planar red-blue dominating set

We first propose several reduction rules and then we analyze the size of the obtained graph.

Reduction rules. We start with an elementary rule that turns out to be helpful in simpli-
fying the instance, and then we present the rules for a single vertex and a pair of vertices. For
simplicity, we will use the shorthand rbds to denote a red-blue dominating set in a graph.

Rule 1. Iteratively remove blue vertices whose neighborhood is included into the neighbor-
hood of another blue vertex. Similarly, remove red vertices whose neighborhood includes the
neighborhood of another red vertex.

Definition 1. Let G = (VB ∪ VR, E) be a graph. The neighborhood of a vertex v ∈ VB ∪ VR
is the set N(v) = {u : {v, u} ∈ E}. The private neighborhood of a blue vertex b is the set
P (b) = {r ∈ N(b) : N(N(r)) ⊆ N(b)}.
Rule 2. Let b ∈ VB be a blue vertex. If |P (b)| > 1, remove P (b) from G and add a new red
vertex r and the edge {b, r}.
Definition 2. Let G = (VB ∪ VR, E) be a graph. The neighborhood of a blue pair of vertices
b, c ∈ VB is the set N(b, c) = N(b)∪N(c). The private neighborhood of a blue pair of vertices
b, c ∈ VB is the set P (b, c) = {r ∈ N(b, c) : N(N(r)) ⊆ N(b, c)}.
1Just consider the radial graph corresponding to the input graph G and its dual G∗, and color the vertices of
G (resp. G∗) as red (resp. blue).

118

Rule 3. Let b, c be two distinct blue vertices. If |P (b, c)| > 2 and there is no blue vertex d 6= b, c
which dominates P (b, c):

1. if P (b, c) * N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add two new red vertices rb, rc and the edges {b, rb}, {c, rc};
2. if P (b, c) ⊆ N(b) and P (b, c) ⊆ N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edges {b, r}, {c, r};
3. if P (b, c) ⊆ N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edge {b, r};
4. if P (b, c) * N(b) and P (b, c) ⊆ N(c):

• symmetrically to Case 3.

Lemma 1. [?]2 Let G = (VB ∪ VR, E) be a graph. If G′ is the graph obtained from G by the
application of Rules 1, 2, or 3, then there is a rbds in G of size at most k if and only if there
is one in G′.

Analysis of the kernel size. We will show that a graph reduced under our rules (i.e., a
graph for which none of the rules can be applied anymore) has size linear in |D|, the size of a
solution. To this aim we assume that the graph is plane (that is, given with a fixed embedding)
and we will define a notion of region adapted to our definition of neighborhood. Then we will
show that, given a solution D, there is a maximal region decomposition < such that:

• < has O(|D|) regions,

• < covers all vertices but O(|D|) of them,

• each region of < has size O(1).

The three following propositions treat respectively each of the above claims.

Definition 3. Let G = (VB ∪ VR, E) be a plane graph and let v, w ∈ VB. A region R(v, w)
between v and w is a closed subset of the plane such that:

• the boundary of R(v, w) is formed by two simple paths connecting v and w, each of them
having at most 4 edges;

• all vertices (strictly) inside R(v, w) belong to N(v, w) or N(N(v, w)).

Definition 4. Let G = (VB ∪ VR, E) be a plane graph and let D ⊆ VB. A D-decomposition of
G is a set of regions < between pairs of vertices in D such that:

• any region between v,w does not contain vertices in D \ {v, w};
• any two regions have only the boundary in common.

We note V (<) =
⋃

R∈< V (R). A D-decomposition is maximal if there is no region R /∈ <
such that < ∪ {R} is a D-decomposition with V (<) (V (< ∪ {R}).
2The proofs of the results marked with ‘[?]’ are omitted in this extended abstract.

119

Proposition 1. [?] Let G be a reduced plane graph and let D be a rbds in G. There is a
maximal D-decomposition of G such that |<| ≤ 3 · |D| − 6.

Proposition 2. [?] Let G = (VB ∪ VR, E) be a reduced plane graph and let D be a rbds in G.
If < is a maximal D-decomposition, then |V \ (V (<) ∪D)| ≤ 2 · |D|.
Proposition 3. [?] Let G = (VB ∪ VR, E) be a reduced plane graph, let D be a rbds in G, and
let v, w ∈ D. A region R between v and w contains at most 15 vertices distinct from v, w.

We are finally ready to piece everything together and prove Theorem 1.

Proof of Theorem 1. Let G be the plane input graph and let G′ be the reduced graph obtained
from G. According to Lemma 1, G admits a rbds with size at most k if and only if G′ admits
one. It is easy to see that the same time analysis of [2] implies that our reduction rules can be
applied in time O(|V (G)|3). According to Propositions 1, 2, and 3, if G′ admits a rbds with
size at most k, then G′ has size at most k + 15 · (3k − 6) + 2k ≤ 48k.

References

[1] J. Alber, H. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter algorithms for planar
dominating set and related problems. In Proc. of the 7th Scandinavian Workshop on Algorithm
Theory (SWAT), volume 1851 of LNCS, pages 97–110, 2000.

[2] J. Alber, M. Fellows, and R. Niedermeier. Polynomial-Time Data Reduction for Dominating Set.
Journal of the ACM, 51(3):363–384, 2004.

[3] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos.
(Meta) Kernelization. In Proc. of the 50th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 629–638. IEEE Computer Society, 2009.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[5] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels. In
Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 503–510. SIAM,
2010.

[6] V. Garnero and I. Sau. A linear kernel for planar total dominating set. Manuscript available at
arxiv.org/abs/1211.0978, 2012.

[7] Q. Gu and N. Imani. Connectivity is not a limit for kernelization: Planar connected dominating
set. In Proc. of the 9th Latin American Symposium on Theoretical Informatics (LATIN), volume
6034 of LNCS, pages 26–37, 2010.

[8] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar graphs. In
Proc. of the 34th International Colloquium on Automata, Languages and Programming (ICALP),
volume 4596 of LNCS, pages 375–386, 2007.

[9] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Linear ker-
nels and single-exponential algorithms via protrusion decompositions. Manuscript available at
arxiv.org/abs/1207.0835, to appear in Proc. of ICALP’13, 2012.

[10] T. Kloks, C.-M. Lee, and J. Liu. New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k
Disjoint Cycles on Plane and Planar Graphs. In Proc. of 28th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 2573 of LNCS, pages 282–295, 2002.

[11] D. Lokshtanov, M. Mnich, and S. Saurabh. A linear kernel for planar connected dominating set.
Theoretical Computer Science, 23(412):2536–2543, 2011.

120

The double projection method for some
domination related parameters in Cartesian

product graphs∗

Ismael González Yero1 and Amaurys Rondón Aguilar2

1Department of Mathematics, University of Cádiz, Spain
ismael.gonzalez@uca.es

2Filial Universitaria Municipal Media Luna, Universidad de Granma, Cuba
arondona@udg.co.cu

A set S of vertices of a graph G is a dominating set for G if every vertex of G is
adjacent to at least one vertex of S. The domination number γ(G), of G, is the minimum
cardinality of a dominating set in G. Vizing’s conjecture for the domination number of a
Cartesian product graph G�H of the graphs G and H, states that γ(G�H) ≥ γ(G)γ(H).
In this sense, Clark and Suen [The Electronic Journal of Combinatorics, 2000] obtained
that 2γ(G�H) ≥ γ(G)γ(H) by using a technique which has been called after the “double
projection method”. This technique is also useful while investigating other domination
related parameters in Cartesian product graphs. A domination parameter of G is related
to those sets of vertices of a graph satisfying some domination property together with other
conditions on the vertices of G. In this paper we use the double projection method to
obtain some Clark and Suen bound-type results for the k-domination number, the Roman
domination number and the global offensive alliance number of Cartesian product graphs.

Keywords: Domination number; k-domination number; Roman domination number; global
offensive alliances; Cartesian product graphs.

AMS Subject Classification Numbers: 05C69; 05C76; 05C78.

1 Introduction

One of the most interesting open problems about domination in graphs is related to bounding
the domination number of Cartesian product graphs [10]. Vizing’s conjecture states that the
domination number of the Cartesian product of two graphs is greater than or equal to the
product of the factor graphs. Several partial results and numerous Vizing-like results related
to other graph invariants have appeared in the literature. Nevertheless, only one general
result, proved by Clark and Suen in [2], is known. There was proved that for every Cartesian

product graph G�H it follows, γ(G�H) ≥ γ(G)γ(H)
2 . A slightly improvement of this result was

presented in [9] where the authors showed that γ(G�H) ≥ γ(G)γ(H)
2 + 1

2 min{γ(G), γ(H)}. In

∗The research was partially done while the first author was at University of Maribor, Slovenia, supported
by “Ministerio de Educación, Cultura y Deporte”, Spain, under the “Jose Castillejo” program for young
researchers. Reference number: CAS12/00267.

121

both articles [2, 9], the authors used a similar technique, frequently called “double projection
method” which is particularly useful while proving some other Vizing-like results. The article
[1] surveys the most important contributions about Vizing’s conjecture. Moreover, in this
survey were presented some new results and, for instance, the so called double projection
method was applied to claw-free graphs to obtain a better lower bound for them than in the
general case. The proofs of our results are relatively similar among them, due to the technique
which was used. Nevertheless, it is necessary to introduce some changes during the development
of the technique in each proof, which are related to the style of the studied domination related
parameter.

We begin with the establishment of the principal terminology and notation which will be
used throughout the article. Hereafter G = (V,E) denotes a finite simple graph. For two
adjacent vertices u and v of G we use the notation u ∼ v and, in this case, we say that uv
is an edge of G, i.e., uv ∈ E. For a vertex v of G, N(v) = {u ∈ V : u ∼ v} denotes the
set of neighbors that v has in G. N(v) is called the open neighborhood of v and the close
neighborhood of v is defined as N [v] = N(v)∪ {v}. For a set D ⊆ V , the open neighborhood is
N(D) = ∪v∈DN(v) and the closed neighborhood is N [D] = N(D) ∪D. The maximum degree
of G is denoted by ∆. A set D is a dominating set if N [D] = V . The domination number γ(G)
is the minimum cardinality of a dominating set in G. We say that a set S is a γ(G)-set if it is
a dominating set and |S| = γ(G).

We recall that given two graphs G and H with set of vertices V1 = {v1, v2, ..., vn1} and V2 =
{u1, u2, ..., un2}, respectively, the Cartesian product of G and H is the graph G�H = (V,E),
where V = V1×V2 and two vertices (vi, uj), (vk, ul) are adjacent in G�H if and only if (vi = vk
and uj ∼ ul), or (vi ∼ vk and uj = ul) [6].

In order to present the results we need to introduce the following notation. Given two graphs
G = (V1, E1), H = (V2, E2) and a set X of vertices of G�H = (V,E), the projections of X
over the graphs G and H, respectively, are the following ones.

PG(X) = {u ∈ V1 : ∃u ∈ V1 ; (u, v) ∈ X}, PH(X) = {v ∈ V2 : ∃u ∈ V1 ; (u, v) ∈ X}

Moreover, given a set C ⊂ V1 of vertices of G and a vertex v ∈ V2, a G(C, h)-cell in G�H is
the set Ch = {(u, v) ∈ V : (u, v) ∈ C × {v}}. A v-fiber is the copy of G corresponding to the
vertices in {v} × V2.

2 k-domination

For any positive integer k ≤ ∆, the set S is a k-dominating set in G if for every vertex outside
of S we have that |N(v) ∩ S| ≥ k. The k-domination number γk(G), of G, is the minimum
cardinality of a k-dominating set in G. We say that the set S is a γk(G)-set if it is a k-
dominating set and |S| = γk(G). k-domination in graphs was introduced first in [4]. For more
terminology and notation we follow [5].

Theorem 2.1. Let G be any graph and let H be a graph of maximum degree ∆. For any
positive integer k ≤ ∆,

γk(G�H) ≥ γ(G)γk(H)

2
.

Proof. Let V1 and V2 be the vertex sets of the graphs G and H, respectively. Let S =
{u1, ..., uγ(G)} be a dominating set for G. Let Π = {A1, A2, ..., Aγ(G)} be a vertex partition of

122

G such that ui ∈ Ai and Ai ⊆ N [ui]. Let {Π1,Π2, ...,Πγ(G)} be a vertex partition of G�H,
such that Πi = Ai × V2 for every i ∈ {1, ..., γ(G)}.

Let D be a γk(G�H)-dominating set. Now, for every i ∈ {1, ..., γ(G)}, let Di = PH(D∩Πi).
Suppose Di is not a k-dominating set in H. So, there exists a vertex w /∈ Di such that
|NDi(w)| < k (w is not k-dominated by Di), which means that for every vertex v belonging
to the G(Ai, w)-cell Awi it is satisfied that |ND∩Πi(v)| < k. Thus, for every vertex v ∈ Awi we
have that v has at least one neighbor from D in the other G(Ai, w)-cell Awj , j 6= i, belonging
to the same w-fiber. Now, if for every i ∈ {1, ..., n}, Xi denotes the set of vertices of H
which are not k-dominated by Di, then Di ∪Xi is a k-dominating set in H and we have that
γk(H) ≤ |Di|+ |Xi|. Hence,

γk(G�H) = |D| ≥
γ(G)∑

i=1

|Di| ≥
γ(G)∑

i=1

(γk(H)− |Xi|) = γ(G)γk(H)−
γ(G)∑

i=1

|Xi|.

So, we obtain that

γk(G�H) ≥ γ(G)γk(H)−
γ(G)∑

i=1

|Xi|. (1)

On the other hand, for every v ∈ V2, let lv be the number of G(Aji , v)-cells Avj1 , A
v
j2
, ..., Avjlv

for which every vertex belonging to each G(Aji , v)-cell is not k-dominated by D ∩ Πj1 , D ∩
Πj2 , ..., D∩Πjlv

, respectively. Now, let Yv = S−{uj1 , uj2 , ..., ujlv }. Notice that, as we mention
before, each vertex of each one of these G(Aji , v)-cells has a neighbor from D not in the same
G(Aji , v)-cells which itself belongs. Thus, they are dominated by vertices of D belonging to
the same v-fiber but not to the same G(Aji , v)-cell. Hence,

∑

v∈V2
lv =

γ(G)∑

i=1

|Xi|. (2)

Now, for every v ∈ V2 let Dv be the set of vertices of D belonging to the same v-fiber. Since
Yv dominates V1−

⋃lv
i=1A

v
ji

and Dv dominates the union of all G(Aji , v)-cells
⋃lv
i=1A

v
ji

we have
that Sv = Dv ∪ Yv is a dominating set in G. If lv > |Dv|, then we have

|Sv| = |Dv|+ |Yv| = |S| − lv + |Dv| = γ(G)− lv + |Dv| < γ(G),

which is a contradiction. So, we have lv ≤ |Dv| and we obtain that
∑

v∈V2
lv ≤

∑

v∈V2
|Dv| = γk(G�H), (3)

Thus, by (1), (2) and (3) we deduce γk(G�H) ≥ γ(G)γk(H) − γk(G�H), and the result
follows.

3 Global offensive alliances

A nonempty set S ⊆ V is a global offensive alliance in G if δS(v) ≥ δS(v) + 1, for every v ∈ S.
Note that every global offensive alliance is a dominating set [7]. The global offensive alliance
number of G, denoted by γo(G), is defined as the minimum cardinality of a global offensive
alliance in G. A global offensive alliance of cardinality γo(G) is called a γo(G)-set.

Theorem 3.1. For any graphs G and H, γo(G�H) ≥ 1
2 max{γ(G)γo(H), γo(G)γ(H)}.

123

4 Roman domination

A map f : V → {0, 1, 2} is a Roman dominating function for G if for every vertex v
with f(v) = 0, there exists a vertex u ∈ N(v) such that f(u) = 2 [3, 8]. The weight of
a Roman dominating function is given by f(V) =

∑
u∈V f(u). The minimum weight of a

Roman dominating function for G is called the Roman domination number of G and it is
denoted by γR(G). A function f is a γR(G)-function if it is a Roman dominating function and
f(V) = γR(G).

Theorem 4.1. For any graphs G and H, γ(G�H) ≥ γ(G)γR(H)
3 .

In [11] was proved that for any graphs G and H, γR(G�H) ≥ γ(G)γ(H), which leads to

γ(G�H) ≥ γ(G)γ(H)
2 since for any graph G, it follows that γ(G) ≥ γR(G)

2 . Notice that this

bound is the same one obtained in [2]. Now, if γR(H) > 3γ(H)
2 , then the bound of Theorem

4.1 is better than the bound of [2] and [11]. There are several examples of graphs satisfying

that γR(H) > 3γ(H)
2 . For instance, Roman graphs by definition satisfy that γR(H) = 2γ(H).

For Roman graphs Theorem 4.1 leads to the following consequence.

Corollary 4.2. For any graphs G and any Roman graph H, γ(G�H) ≥ 2γ(G)γ(H)
3 .

References

[1] B. Brešar, P. Dorbec, W. Goddard, B. L. Hartnell, M. A. Henning, S. Klavžar, D. F. Rall,
Vizing’s conjecture: a survey and recent results, Journal of Graph Theory, 69 (2012)
46–76.

[2] W. E. Clark, S. Suen, An inequality related to Vizing’s conjecture, The Electronic Journal
of Combinatorics 7 (2000), no. 1, Note 4, 3 pp.

[3] E. J. Cockayne, P. A. Dreyer, S M. Hedetniemi, S. T. Hedetniemi, Roman domination in
graphs, Discrete Mathematics 278 (1-3) (2004) 11–22.

[4] J. F. Fink, M. S. Jacobson, n-domination in graphs. In: Graph Theory with Applications
to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, 283–300.

[5] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, Inc. New York, 1998.

[6] R. Hammack, W. Imrich, S. Klavžar. Handbook of product graphs. CRC press, Taylor &
Francis Group. Boca Raton, Fl, USA. Second Edition. 2011.

[7] P. Kristiansen, S. M. Hedetniemi, S. T. Hedetniemi, Alliances in graphs, Journal of Com-
binatorial Mathematic and Combinatorial Computing 48 (2004) 157–177.

[8] I. Stewart, Defend the Roman Empire, Scientific American, December (1999) 136–138.

[9] S. Suen, J. Tarr, An improved inequality related to Vizing’s conjecture, The Electronic
Journal of Combinatorics 19 (2012) #P8.

[10] V. G. Vizing, The Cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30–43.

[11] Y. Wu, An Improvement on Vizing’s conjecture, manuscript. arxiv.org/pdf/0909.3695.pdf

124

Two-Dimensional Optimal Mechanism
Design for a Single Machine Scheduling

Problem

Ruben Hoeksma1 and Marc Uetz1

1 r.p.hoeksma@utwente.nl, m.uetz@utwente.nl. Department of Applied Mathematics,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

We consider an optimal mechanism design problem with two-dimensional private data for a
non-auction problem, namely for the classic problem of scheduling n jobs with weights wj and
processing times pj on a single machine. The same problem with single dimensional private data
was addressed before by Heydenreich et al. [4]. In line with Myerson’s seminal result on optimal
auctions for selling a single item [6], they show that the optimal mechanism is Smith’s rule with
respect to “virtual” weights. In particular, it can be computed and implemented in polynomial
time. Indeed, it is fair to say that optimal mechanism design with single dimensional private
data is pretty well understood, while algorithmic results for optimal mechanism design with
multi dimensional private data have been obtained only recently, e.g. [1, 2]. For single machine
scheduling, Heydenreich et al. leave it as an open problem “to identify (closed formulae for)
optimal mechanisms for the 2-d case” [4]. We solve this problem, as our main result is:

Theorem 1 ([5]). An optimal randomized mechanism for the single machine mechanism design
problem with two-dimensional private data can be computed and implemented in polynomial
time.

Several technical contributions form the basis of this result: We formulate the mechanism
design problem as an exponential size integer linear program based on the well known linear
ordering formulation [8]. The corresponding LP relaxation represents randomized mechanisms,
yet is still exponential in size. We can show that this LP can be compactified such that only a
polynomial number of variables and constraints remain, without degradation of the solution.
By solving the compactified LP we find the optimal objective value and so-called interim
schedules. Implementing the corresponding solution finally asks for an algorithm which, for any
given vector of private data, outputs a lottery over at most n different schedules. To this end we
propose a geometric decomposition algorithm which, for any point in the scheduling polytope
[7], computes a decomposition into a convex combination of ≤ n vertices, i.e., schedules.

Problem Definition and LP-compactification

The problem is defined as follows: A single machine is owned by the mechanism designer
who needs to decide in which order to process the jobs. Each of the jobs has a private type,
tj = (wj , pj), specifying cost for waiting wj and processing requirement pj . While the types

125

of the jobs are private to the job itself, we assume that each job has a discrete type space, Tj ,
with at most m types, and a probability distribution ϕj : Tj → [0, 1] over that type space,
public to both the mechanism designer and all jobs. By T = T1 × . . .× Tn we denote the type
space of all jobs, with t = (t1, . . . , tn) ∈ T . Moreover, (tj , t−j) denotes a type vector where tj
is the type of job j and t−j are the types of all jobs except j, with t−j ∈ T−j :=

∏
k 6=j Tk. For

given t ∈ T and K ⊆ N , we also define the shorthand notation ϕ(tK) :=
∏

k∈K ϕk(tk) for the
product distribution of the types of jobs in K, particularly ϕ(t−j) :=

∏
k 6=j ϕk(tk).

Each job must be scheduled on the machine and the jobs must be reimbursed for their
waiting cost with a payment, πj . The mechanism designer aims to minimize the total expected
payment made to the jobs,

∑
t ϕ(t)

∑
j πj(t). The jobs however aim to maximize their expected

utility, πj(tj) − wj(tj)Esj(tj). Here Esj(tj) represents the expected starting time of job j
given that it has type tj , the expectation taken over all possible types of the other jobs.
The jobs may of course lie about their types to improve their expected utility. However,
Meyerson’s revelation principle states that w.l.o.g. we may restrict to direct mechanisms where
the equilibrium strategies of all jobs are to be truthful. Then we obtain the following LP-
formulation for optimal randomized mechanisms in the standard Bayes-Nash setting.

min
∑

j∈N

∑

i∈Tj

ϕi
jπ

i
j (1)

πij ≥ wi
jEs

i
j ∀j, i (2)

πij ≥ πi
′
j − wi

j(Es
i′
j − Esij) ∀j, i, i′ (3)

Esij =
∑

t−j∈T−j

ϕ(t−j)
∑

k∈N
dkj(t

i
j , t−j)pk(tij , t−j) ∀j, i (4)

djj(t) = 0 ∀j, t (5)

dkj(t) + djk(t) = 1 ∀j, k, t j 6= k (6)

djk(t) ∈ [0, 1] ∀j, k, t (7)

Here, we use shorthand notation ϕi
j for ϕj(t

i
j), with type tij ∈ Tj . The same for πij , w

i
j ,

and Esij . Individual rationality constraints (2) ensure that all jobs have non-negative expected
utility. The Bayes-Nash incentive compatibility constraints (3) ensure that for each job it is
best in expectation to be truthful. Variables dkj(t) are linear ordering variables for jobs k and
j, given a vector of types t. The LP-formulation (1)-(7) can have Ω(mn) variables, while the
input size of the problem is O(nm).

We reduce the number of variables by considering variables dkj(tk, tj) instead of dkj(t). This
translates to choosing dkj only based on the types tj and tk of those jobs, instead of letting dkj
depend on the types of all jobs. We refer to this reduction as LP-compactification and show:

Lemma 2 ([5]). The optimal mechanism design problem described by (1)-(7) can be equivalently
described by a compactified LP, where variables dkj(t) are replaced by variables dkj(tk, tj).

The LP-compactification results in O(n2m2) variables and therefore can be solved in time
polynomial in the size of the input.

Implementation

The optimal solution of the compactified LP consists of a payment and an expected starting
time for each job and type of job, as well as the corresponding vector of linear ordering variables

126

d. To obtain the actual implementation for this so-called interim solution, for any given vector
of types t we first calculate the starting times for each job

sj(t) =
∑

k 6=j

dkj(tk, tj)pk(tk) ,

where tk and tj are the types of jobs k and j in t. The vector s(t) is by construction a point
in the scheduling polytope Q(t), parametrized along types t [7]. We show:

Lemma 3 ([5]). For any point in the single machine scheduling polytope, a decomposition of
this point into a convex combination of at most n schedules can be computed in O(n3 log n)
time.

Our algorithm follows the geometric construction as proposed by Grötschel et al. in [3,
Thm. 6.5.11]. Using this construction, the result follows from a combinatorial, O(n2 log n)
time algorithm to compute the maximum intersection of the scheduling polytope with a line.

References

[1] S. Alaei, H. Fu, N. Haghpanah, J. Hartline, and A. Malekian (2012). Bayesian
Optimal Auctions via Multi- to Single-agent Reduction. In: Proc. 13th EC, 2012, p. 17

[2] Y. Cai, C. Daskalakis and S.M. Weinberg (2012). Optimal Multi-Dimensional Mech-
anism Design: Reducing Revenue to Welfare Maximization. In: Proc. 53rd FOCS, 2012,
pp. 130-139.

[3] M. Grötschel, L. Lovász and A. Schrijver (1988). Geometric algorithms and com-
binatorial optimization. Algorithms and combinatorics, 1988, Springer.

[4] B. Heydenreich, D. Mishra, R. Müller and M. Uetz (2008). Optimal Mechanisms
for Single Machine Scheduling. In: Proc. WINE 2008, LNCS 5385, 414-425.

[5] R. Hoeksma and M. Uetz (2013). Two Dimensional Optimal Mechanism Design for a
Sequencing Problem. In: Proc. IPCO 2013, LNCS 7801, pp. 242-253.

[6] R.B. Myerson (1981). Optimal Auction Design. Math. OR 6, 1981, 58-73.

[7] M. Queyranne (1993). Structure of a simple scheduling polyhedron. Math. Prog. 58,
1993, 263-285.

[8] M. Queyranne and A.S. Schulz Polyhedral Approaches to Machine Scheduling. TU Berlin
Technical Report 408/1994.

127

Application of the descent with mutations
(DWM) metaheuristic to the computation

of a median equivalence relation

Olivier Hudry1

1Telecom ParisTech, 46, rue Barrault, 75634 Paris Cedex 13, France,
olivier.hudry@telecom-paristech.fr

1 Introduction

We deal with a metaheuristic (for references on metaheuristics, see for instance [5]) called
“descent with mutations” (DWM). This method looks like the usual descent, but with random
elementary transformations which are performed, from time to time, in a blind way, in the sense
that they are accepted whatever their effects on the function f to optimize (such an elementary
transformation performed without respect to its effect on f will be called a mutation in the
sequel). The density of performed mutations decreases during the process, so that the process
at its end is the same as a classic descent.

We apply DWM to two problems, both arising from the field of classification or clustering,
more precisely from the aggregation and the approximation of symmetric relations: Régnier’s
problem [9] and Zahn’s problem [11] (see also for instance [2] for references on these problems in
classification). We compare DWM with a simulated annealing method improved by ingredients
coming from the noising methods (as done in [3] and in [4] for the Travelling Salesman Problem;
note that Tabu search was performed in [1] and compared for these problems with simulated
annealing: the results provided by these two methods are qualitatively the same).

2 Principle of DWM

As the other metaheuristics, DWM is not designed to be applicable to only one combinatorial
problem, but to many of them. Such a problem can be stated as follows:

Minimize f(s) for s ∈ S,

where S is a finite set and f is a function defined on S; the elements s of S will be called
solutions. As many other metaheuristics, DWM is based on elementary transformations. A
transformation is any operation changing a solution into another solution. A transformation
will be considered as elementary (or local) if, when applied to a solution s, it changes one
feature of s without modifying its global structure much. For instance, if s is a binary string,
a possible elementary transformation would be to change one bit of s into its complement.

Thanks to the elementary transformations, we may define the neighbourhood N(s) of a
solution s: N(s) is the set of all the solutions that we can obtain from s by applying an

129

elementary transformation to s. Then, we may define an iterative improvement method, or
descent for a minimization problem (it is the case for the problems considered here), as follows.
A descent starts with an initial solution s0 (which can be for instance randomly computed, or
found by a heuristic) and then generates a series of solution s1, s2, ..., si, ..., sq such that:

1. for any i ≥ 1, si is a neighbour of si−1: si ∈ N(si−1);

2. for any i ≥ 1, si is better than si−1 with respect to f : f(si) < f(si−1);

3. no neighbour of sq is better than sq: ∀s ∈ N(sq), f(s) ≥ f(sq).

Then sq is the solution returned by the descent. The descent is over and the final solution
sq provided by the descent is (at least) a local minimum of f with respect to the adopted
elementary transformation. The whole method may stop here, or restarts a new descent from
a new initial solution (to get repeated descents).

In such a descent, the process is not blind in the sense that the elementary transformations
are adopted only if they improve the value taken by f . In DWM, we also apply the basic
process of a descent but, from time to time, we apply and accept the considered elementary
transformation, whatever its effect on f : we say that we have a blind elementary transfor-
mation, or simply a mutation. Thus, the only thing to specify in order to apply DWM (in
addition to what must be defined to apply a descent, like the elementary transformation) is
when a mutation is adopted.

3 Application of DWM to Régnier’s and Zahn’s problems

3.1 Statement of Régnier’s and Zahn’s problems as the partition of a graph
into disjoint cliques

Régnier’s problem [9], which arises for example in cluster analysis, consists in the aggregation
of equivalence relations into a unique equivalence relation summarizing the initial equivalence
relations as accurately as possible. More precisely, we consider a set X of n objects and a set
of m criteria; each criterion is assumed to define an equivalence relation (or, equivalently, a
partirion) on X; the aim is to find a unique equivalence relation defined on X which summarizes
the m criteria as accurately as possible by minimizing the total number of disagreements with
respect to the given criteria. This problem is NP-hard when m is not fixed [6] (its complexity
is unknown in the general case when m is fixed).

Zahn’s problem [11], which arises in social sciences, consists in approximating a given sym-
metric relation R defined on a set X by an equivalence relation E defined also on X which is at
minimum distance from R with respect to the symmetric difference distance (which measures
the number of disagreements between R and E, see [7]). This problem is NP-hard too, as
shown by M. Krivanek and J. Moravek [8].

These two problems can be represented (see for instance [10]) by the following clique parti-
tioning problem (CPP in what follows). In this CPP, we consider a weighted undirected graph
G = (X,U,w) with n vertices; G is complete; an integer (which can be positive, or negative,
or equal to 0) w(x, y) = w(y, x) is associated with each edge {x, y} ∈ U(x 6= y); then CPP
consists in finding a partition of X into k(G) disjoint cliques C1, C2 , ..., Ck(G) (note that
the number k(G) of cliques is not fixed a priori and depends on the considered graph; for
this reason and because of the signs of the weights, CPP is not the famous clique partitioning

130

problem sometimes known as the k-cut problem, though the formulations of the two problems
are near each other) in order to minimize the sum of the weights of the edges with their two
extremities in a same clique, i.e., in order to minimize the function f defined for any partition
(C1, C2, ..., Ck) of X by:

f(C1, C2, ..., Ck) =
1

2

k∑

i=1

∑

(x,y)∈C2
i ,x 6=y

w(x, y).

To formulate Régnier’s problem and Zahn’s problem as instances of CPP, we build a weighted
complete graph as follows. The vertex set will be the set X of Régnier’s or Zahn’s problems.
For Régnier’s problem, the weight of an edge {x, y} (with x 6= y) is given by the difference
m−2mxy, wheremxy denotes the number of equivalence relations for which x and y are together
in a same class (this weight is also the difference between the number, equal to m −mxy, of
equivalence relations for which x and y are not together in a same class, and mxy). For Zahn’s
problem, let R be the symmetric relation of the instance; the weight of an edge {x, y} (with
x 6= y) is −1 if x and y are in relation with respect to R and +1 otherwise. Then the search
of an equivalence relation which is a solution of Régnier’s or Zahn’s problems consists in both
cases in partitioning the weighted complete graph into disjoint cliques in order to minimize the
sum of the weights of the edges with their two extremities in a same clique, i.e. CPP.

3.2 Application of the descent (without mutations) to CPP

To define a descent for CPP, we apply the following elementary transformation: we choose a
vertex v and we move v from its current clique into another clique or alone in a new clique; in
this last case, we say that we put v in the empty clique. To apply a descent, we begin from a
randomly chosen partition and we consider the vertices one after the other in a cyclic way; a
neighbour better than the current solution is accepted as soon as it has been discovered. More
precisely, for each vertex v and for each clique C (including the empty one) of the current
solution s, we compute the variation ∆f(s, C) of f when v is moved from its current clique to
C; the clique C∗ for which the variation ∆f(s, C∗) is minimum is called the best clique for v
(with respect to s); then, if moving v from its current clique to its best clique (with respect
to s) involves a strict improvement (i.e., if ∆f(s, C∗) < 0), we do move v from its current clique
to C∗ and thus we get a new solution s′ from which we apply the same process; otherwise, we
keep v in its current clique and we consider the next vertex. When there is no vertex that can
be moved towards a clique better than its current clique, the descent is over.

3.3 Application of DWM to CPP

In DWM, we apply almost a descent but, from time to time, instead of moving the considered
vertex to its best clique, we move it to a clique chosen randomly. More precisely, when a vertex
v is considered, we have two possibilities: with a probability p, we choose a clique randomly,
with a uniform probability on the cliques (including the empty one) of the current solution;
or, with a probability 1− p, we compute the best clique for v; in both cases, we move v to the
chosen clique.

In our experiments, p decreases arithmetically from a maximum value p0 down to 0 (it is
also possible to apply a geometrical decrease, as in simulated annealing, but then not down to
0); this parameter p0 gives the probability to perform a mutation at the beginning of the whole

131

process. Then the method requires the specification of only two parameters: p0 and the total
number of performed transformations, which is directly related to the CPU time that the user
wishes to spend to solve his or her problem. With this respect, DWM is much easier to tune
than some other metaheuristics like simulated annealing, which involves several parameters.

4 Experiments

Experiments are not detailed here. They show that DWM may provide good results, with
about the same quality (or even better) as the one provided by an improved and sharply tuned
version of simulated annealing, within the same CPU time (or less), while, above all, it is very
easy to design and to apply DWM to problems like CPP, and usually easier to tune than a
simulated annealing method.

Indeed, the main advantage of DWM with respect to standard metaheuristics is that, aside
the CPU time, there is only one parameter to tune: p0. The sensibility analysis shows that
the tuning of p0 is not a crucial point if the value of p0 is not too low. It is even possible to
choose p0 = 1, so that there is no parameter to tune!...

References

[1] S.G. de Amorim, J.-P. Barthélemy, C.C. Ribeiro, Clustering and clique partitioning: sim-
ulated annealing and tabu search approaches, Journal of Classification 9, 1992, 17-42.

[2] F. Brucker, J.-P. Barthélemy, Éléments de classification, Hermès, 2007.

[3] I. Charon, O. Hudry, Mixing different components of metaheuristics, in: I.H. Osman and
J.P. Kelly (eds), Metaheuristics: Theory and Applications, Kluwer Academic Publishers,
Boston, 1996, 589-603.

[4] I. Charon, O. Hudry, Application of the noising methods to the Travelling Salesman Pro-
blem, European Journal of Operational Research 125 (2), 2000, 266-277.

[5] M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics, Springer, 2010.

[6] O. Hudry, NP-hardness of the computation of a median equivalence relation in classifica-
tion (Régnier’s problem), Mathematics and Social Sciences 197, 2012, 83-97.

[7] O. Hudry, B. Leclerc, B. Monjardet, J.-P. Barthélemy, Metric and latticial medians, in
Concepts and methods of decision-making process, D. Bouyssou, D. Dubois, M. Pirlot
and H. Prade (eds), Wiley, 2009, 771-812.

[8] M. Krivanek, J. Moravek, NP-hard problems in hierarchical-tree clustering, Acta Informa-
tica 23, 1986, 311-323.

[9] S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automa-
tique, I.C.C. Bulletin 4, 1965, 175-191. Reprint: Mathématiques et Sciences humaines 82,
1983, 13-29.

[10] Y. Wakabayashi, Aggregation of binary relations: algorithmic and polyhedral investiga-
tions, PhD thesis, Augsbourg, 1986.

[11] C.T. Zahn, Approximating symmetric relations by equivalence relations, SIAM Journal
on Applied Mathematics 12, 1964, 840-847.

132

Relaxation of 3-partition instances

Sebastiaan J.C. Joosten1,3,4 and Hans Zantema2,4

1Department of Computer Science, Open University, Heerlen, The Netherlands
2Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands

3Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
4Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The

Netherlands

The 3-partition problem admits a straightforward formulation as a 0-1 Integer
Linear Program (ILP). We investigate problem instances for which the half-integer
relaxation of the ILP is feasible, while the ILP is not. We prove that this only
occurs on a set of at least 18 elements, and in case of 18 elements such an instance
always contains an element of weight ≥ 10. These bounds are sharp: we give all 14
instances consisting of 18 elements all having weight ≤ 10. Our approach is based
on analyzing an underlying graph structure.

1 Introduction

Given a set of 3k elements A = {a1, . . . , a3k} with weights w(a1), . . . , w(a3k). We ask if there
is a partition into k triples, each with sum c =

∑
a∈Aw(a)/k. This problem is called the

3-partition problem (3-PART), and is well-known to be NP-complete [2].
A straightforward approach to answer this is: first determine the set C of all candidate sets.

That is, all sets C ⊆ A such that: the set has three elements |C| = 3 and the sum of the
set
∑

a∈C w(a), which we will abbreviate with w(C), is c. We denote all such sets as C. Now
3-PART can be reformulated as finding k of these candidate sets in such a way that every
element occurs exactly once in a chosen candidate set.

A solution of 3-PART is defined to be a selection of candidate sets represented by a mapping

f : C → {0, 1} such that:
∑

C3a
f(C) = 1 for all a ∈ A, (1)

in which the sum runs over all C ∈ C containing a.
This expresses the NP-hard problem 3-PART as an integer linear program (ILP). If we

extend the range of f to the real interval [0, 1], we obtain a linear program (LP) in polynomial
time, which is polynomially solvable. Assuming P 6= NP , there exist 3-PART instances that
have a solution to the LP, but are not feasible. Finding such an instance was stated as an
open problem in [6]. We found several such 3-PART instances. Most of them had half-integral
solutions, that is, the range of f is contained in {0, 12 , 1}. Such instances without integer but
having half-integral solution we will call nearly-feasible. Every half-integral solution coincides
with a solution of the following ILP problem (by multiplying by 2): find a mapping

g : C → {0, 1, 2} such that:
∑

C3a
g(C) = 2 for all a ∈ A, (2)

133

in which again the sum runs over all C ∈ C containing a.

Definition 1.1. We say that a 3-PART instance is nearly-feasible if C is such that the prob-
lem (2) has a solution, while the problem (1) does not.

We will present all nearly-feasible instances for which k = 6 elements and all numbers are
≤ 10, and prove:

• Every nearly-feasible instance has k ≥ 6.

• Every nearly-feasible instance with k = 6, contains a number being at least 10.

The analysis of nearly-feasible instances is guided by its underlying graph structure. In
Section 2, the underlying graph structure is analyzed, yielding the lower bound k ≥ 6 for
nearly-feasible instances. Moreover, for all 14 possible multigraphs for k = 6, corresponding
instances are given. In Section 3, minimal values for the case k = 6 are investigated.

2 Nearly-feasible instances with minimal k

In this section, we prove that every nearly-feasible instance has k ≥ 6 and show that this
bound is tight. For this, we construct a multigraph (V,E) corresponding to any solution g
of (2) defined by

V = {C ∈ C | g(C) = 1} , E(
{
C,C ′}) =

∣∣C ∩ C ′∣∣ (3)

So the vertices are the candidate sets for which g(C) = 1; since (1) has no solution by definition
of nearly-feasible, there are such candidate sets and V 6= ∅. The number of edges between two
such vertices is given by the number of elements the two candidate sets have in common. This
multigraph is called the solution graph of g.

Lemma 1. Let g be a solution to a nearly-feasible instance with minimal k, and (V,E) the
solution graph of g. Then:

1. (V,E) is cubic, that is: ∀C ∈ V. ∑C′ 6=C E({C,C ′}) = 3.

2. (V,E) is connected

3. |V | = 2k

4. The candidate sets corresponding to any k − 1 vertices are not disjoint

For a proof we refer to our full paper [5].
We investigated the graphs with the properties of Lemma 1 using genbg from the nauty-

package to generate connected cubic graphs. Details about this tool can be found in [7]. The
generated graphs were tested the graph for independent sets using a Haskell program that ran
in just a few seconds. This yielded the following lemma:

Lemma 2. Every connected cubic multigraph on 2k points has an independent set of size k−1
for k ≤ 5. There are, up to isomorphism, 14 connected cubic multigraphs on 12 points with no
independent set of size 5.

By Lemma 2 and Lemma 1, we obtain:

Theorem 1. Every nearly-feasible instance has k ≥ 6.

134

For each of the 14 multigraphs we found an instance for which the 12 candidate sets corre-
sponding to the vertices in the graph are the only candidate sets, that is, every other triple of
elements has a sum unequal to c. We found these within seconds of runtime with the SMT-
solver Yices using the theory of linear inequalities. Details about Yices can be found in [1].
We required w(C) = 1, and scaled the solution back to integers. The found solutions can be
drawn as described by (3). This gives a nice graphical representation which can be found in
our full paper [5].

3 Nearly-feasible instances with low weights

We prove that every nearly-feasible instance with k = 6 contains an element with weight at
least 10, by enumerating 3-PART instances with 18 elements and all weights ≤ 10. We selected
those where (1) has no solution while (2) does, using the following observations to reduce the
computation time:

1. Without loss of generality, we generate instances with weights in increasing order, starting
at 0, and their sum a multiple of k = 6.

2. If m is the highest weight in an instance in which the sum per set is c, replacing weight
w(i) with m− w(i) for all elements i creates another instance in which the sum per set
is 3m− c. Therefore, we only generate instances where 2c ≤ 3m.

3. In a nearly-feasible instance of 18 elements, every element occurs in at least 2 candidate
sets. Therefore, we only proceed with instances for which this holds.

This way, 701827 instances remained to be checked. We run simplex (using the GLPK package),
which should give a solution for the instances for which (2) has a solution. Most of them have
no LP-solution, by which 197110 instances remain. Inspecting the LP-solutions, we remove
the instances where a 1 occurs in a half-integral solution, as by Theorem 1 those instances are
not nearly-feasible. Of the remaining instances, only 7 remained for which (1) has no solution.
All of these were nearly-feasible. We show these instances in the following table on the left,
and on the right those found using the trick stated in number 2.

0,0,1,1,1,2,2,2,4,4,4,5,5,5,8,8,10,10 0,0,2,2,5,5,5,6,6,6,8,8,8,9,9,9,10,10

0,0,1,1,1,2,3,3,4,4,4,4,4,6,6,9,10,10 0,0,1,4,4,6,6,6,6,6,7,7,8,9,9,9,10,10

0,0,1,1,2,2,2,2,4,4,4,5,5,5,8,8,9,10 0,1,2,2,5,5,5,6,6,6,8,8,8,8,9,9,10,10

0,1,1,1,2,2,2,4,4,4,4,4,5,5,5,8,10,10 0,0,2,5,5,5,6,6,6,6,6,8,8,8,9,9,9,10

0,1,1,1,2,2,3,3,3,4,4,4,6,6,6,6,10,10 0,0,4,4,4,4,6,6,6,7,7,7,8,8,9,9,9,10

0,1,1,1,2,3,3,3,4,4,4,4,4,6,6,6,10,10 0,0,4,4,4,6,6,6,6,6,7,7,7,8,9,9,9,10

0,1,1,2,2,2,2,4,4,4,4,4,5,5,5,8,9,10 0,1,2,5,5,5,6,6,6,6,6,8,8,8,8,9,9,10

These and all its permutations are the only nearly-feasible instances of 18 elements with
weights ≤ 10. In particular, we proved the following.

Theorem 2. Every nearly-feasible instance with k = 6, has an element with weight 10 or
higher.

In the seven nearly-feasible instances on the left, candidate sets have a sum of c = 12. In the
right half, c = 18. We have verified that there are no feasible instances with k = 6 featuring

135

candidate sets with a sum of c = 11 using the approach mentioned here. Hence in the sense of
c, the seven left instances are minimal as well.

A logical generalization to (2) parametrized by M ≥ 2 is: find a mapping

g : C → {0, . . . ,M} such that:
∑

C3a
g(C) = M for all a ∈ A, (4)

The nearly-feasible instances presented until now turn out not to satisfy (4) for M odd. How-
ever, instances exist that have a solution to (4) for every M ≥ 2, but not to (1) (or M = 1), for
example: 0, 0, 0, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 6, 6, 9, 10, 11. This was checked by showing that (4) has
a solution for both M = 2 and M = 3 (and not for M = 1); a solution to (4) for any M > 3
is obtained by taking a linear combination of the solutions for M = 2 and M = 3.

Also instances exist that have a solution to (4) for M = 3, but not for M ≤ 2, for exam-
ple: 0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 7, 7, 11, 13, 13. For such instances, the structure is not well
understood, and it is unknown what the least size of such instances could be.

Our notion of nearly-feasible also applies to two other NP-complete problems taken from
the book of Garey and Johnson [3]. Every instance of 3-PART can be seen as an instance
of exact cover by 3-sets. An exact cover by 3-sets instance is given by a collection C of 3-
element subsets of some set A with |A| = 3k. The instance is feasible if one can pick k of
the 3-element subsets in C such that every element in A is picked exactly once. For such
problems we can define the same notion of nearly-feasible instance. In this setting, already
nearly-feasible sets for k = 2 exists. For example, taking 6 elements 1, . . . , 6 and four candidate
sets {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, then the full set is not the union of two of these sets,
but by choosing all four candidate sets all elements are chosen exactly twice. The instance just
given also happens to be a 3-Dimensional matching instance. For more details and a weighted
3-Dimensional matching instance, we refer to [4].

References

[1] B. Dutertre and L. de Moura. The YICES SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[2] M. R. Garey. Complexity results for multiprocessor scheduling under resource constraints.
SIAM Journal of Computing, 4:397–411, 1975.

[3] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[4] S.J.C. Joosten. Relaxations of the 3-partition problem. Master’s thesis, University of
Twente, Enschede, The Netherlands, December 2011.

[5] S.J.C. Joosten and H. Zantema. Relaxation of 3–partition instances. Technical Report
ICIS–R13002, Radboud University Nijmegen, University of Twente, TU Eindhoven, Febru-
ary 2013.

[6] W. Kern and X. Qiu. Improved taxation rate for bin packing games. In TAPAS 2011,
Rome, Italy, volume 6595 of LNCS, pages 175–180, Berlin, 2011. Springer Verlag.

[7] B.D. McKay. nauty User’s Guide (Version 2.4). Australian National University, ACT
0200, Australia, November 2009.

136

Semi blowup and blowup snarks and
Berge-Fulkerson Conjecture∗

K. Karam1 and D. Sasaki2

1Institute of Computing, University of Campinas, Brazil
2COPPE, Federal University of Rio de Janeiro, Brazil

J. Hägglund recently described two constructions of snarks. We review both of
them and consider an infinite family of snarks obtained with each construction.
Then, we establish that each family satisfies the well-known Berge-Fulkerson Con-
jecture, which says that every bridgeless cubic graph has six perfect matchings such
that every edge belongs to precisely two of them.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). If every vertex of G has
degree three, then G is cubic. An edge e ∈ E(G) is a bridge if G − e has more components
than G. A matching M of G is a subset of E(G) such that no two edges of M are adjacent. If
every vertex of G is incident with an edge of M , then M is a perfect matching. A double cover
by six perfect matchings of G is a collection of six perfect matchings such that every edge of G
belongs to exactly two of them. The challenging Berge-Fulkerson Conjecture was independently
formulated by C. Berge and D. R. Fulkerson [7], and first published by Fulkerson [4].

Conjecture 1 (Berge-Fulkerson Conjecture). Every bridgeless cubic graph admits a double
cover by six perfect matchings.

An edge-colouring of G is a mapping π : E(G) → C such that for any two adjacent e, f ∈
E(G), we have that π(e) 6= π(f). If |C| = k, then π is a k-edge-colouring. For each colour
c ∈ C, the set {e ∈ E(G) : π(e) = c} is a colour class. In a 3-edge-coloured cubic graph, a dou-
ble cover by six perfect matchings is obtained by duplicating each colour class. Therefore, it
remains to verify the conjecture for bridgeless cubic graphs not admitting a 3-edge-colouring.
Also notice that a minimal counterexample to this conjecture would be a cubic graph not
admitting a 3-edge-colouring and cyclically 4-edge-connected (every edge-cutset of cardinality
less than four consists of three edges incident to one vertex) [2]. Such graphs are called snarks.
P. G. Tait [9] showed the equivalence between the famous Four Colour Conjecture and the fol-
lowing statement: every bridgeless cubic planar graph has a 3-edge-colouring. The pursuit for
a counterexample to the Four Colour Conjecture brought great importance to snarks. Further-
more, several other well-known conjectures would also have snarks as minimal counterexamples,

∗Supported by CNPq.

137

among them Tutte’s 5-Flow Conjecture and the Cycle Double Cover Conjecture [2]. Snarks
have also proved their potential as counterexamples by refuting eight published conjectures [1].
Some families of snarks have been shown to verify Berge-Fulkerson Conjecture, such as the
Flower snarks [2, 3, 6], the Goldberg snarks [3, 6], the generalized Blanuša snarks [3], the
Szekeres snark [3], a family constructed with the dot product [2], and a family of Loupekine
Snarks [8].

2 Semi blowup and blowup snarks

J. Hägglund [5] described two constructions of snarks, which are reviewed in this section.
Let B be the graph obtained by removing two adjacent vertices from the Petersen graph, as

indicated in Figure 1(a). The degree-two vertices of B are a, b, c, d. Let G be a bridgeless cubic
graph, with a 2-regular subgraph S. Take a cycle C of S, and let C = v1v2 . . . vk. Remove the
edges of C. Take k copies B1, . . . , Bk of B. Indices greater than k are taken modulo k. In order
to construct a semi blowup G′ of (G,S), proceed as follows. For each i ∈ {1, 2, . . . , k}, make vi
adjacent to vertex a of Bi and to vertex b of Bi+1. Also, make vertex c of Bi adjacent to vertex
d of Bi+1. Repeat this operation, illustrated in Figure 1(b), for every cycle of S. The resulting
graph G′ is denoted by SemiBlowup(G,S), adopting Hägglund’s notation. Now, to construct
a blowup G′′ of (G,S), proceed in a slightly different manner. For each i ∈ {1, 2, . . . , k}, add
vertices ui and wi, and edges uivi and viwi. From Bi, make vertex a adjacent to ui, and make
vertex c adjacent to wi. From Bi+1, make vertex b adjacent to ui, and make vertex d adjacent
to wi. Repeat this process, illustrated in Figure 1(c), for every cycle of S. The resulting graph
G′′ is denoted by Blowup(G,S).

Conjecture [2]. Snarks have also proved their potential as counterexamples by refuting eight
published conjectures [1]. Some families of snarks have been shown to verify Berge-Fulkerson
Conjecture, such as the Flower snarks [2, 3, 6], the Goldberg snarks [3, 6], the generalized
Blanuša snarks [3], the Szekeres snark [3], a family constructed with the dot product [2], and
a family of Loupekine Snarks [8].

2 Semi blowup and blowup snarks

J. Hägglund [5] described two constructions of snarks, which are reviewed in this section.
Let B be the graph obtained by removing two adjacent vertices from the Petersen graph, as

indicated in Figure 1(a). The degree-two vertices of B are a, b, c, d. Let G be a bridgeless cubic
graph, with a 2-regular subgraph S. Take a cycle C of S, and let C = v1v2 . . . vk. Remove the
edges of C. Take k copies B1, . . . , Bk of B. Indices greater than k are taken modulo k. In order
to construct a semi blowup G′ of (G,S), proceed as follows. For each i ∈ {1, 2, . . . , k}, make vi
adjacent to vertex a of Bi and to vertex b of Bi+1. Also, make vertex c of Bi adjacent to vertex
d of Bi+1. Repeat this operation, illustrated in Figure 1(b), for every cycle of S. The resulting
graph G′ is denoted by SemiBlowup(G,S), adopting Hägglund’s notation. Now, to construct
a blowup G′′ of (G,S), proceed in a slightly different manner. For each i ∈ {1, 2, . . . , k}, add
vertices ui and wi, and edges uivi and viwi. From Bi, make vertex a adjacent to ui, and make
vertex c adjacent to wi. From Bi+1, make vertex b adjacent to ui, and make vertex d adjacent
to wi. Repeat this process, illustrated in Figure 1(c), for every cycle of S. The resulting graph
G′′ is denoted by Blowup(G,S).

a b

cd

(a) Graph B.

aa bb

ccd d

vi−1 vi vi+1

(b) Construction of a semi blowup snark.

a ab b

cc dd

vi−1
vi vi+1

ui−1 ui ui+1

wi−1

wi

wi+1

(c) Construction of a blowup snark.

Figure 1: Illustration of Hägglund’s constructions.

3 Main Results

In this work, we consider two infinite families of semi blowup and blowup snarks constructed
with the well-known generalized Petersen graphs G(n, 1), n ≥ 5, also known as n-Prisms [10].
Consider the generalized Petersen graphs G(5, 1) and G(6, 1) and their respective outer cycles
C5 and C6. Figure 4 shows SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6), while Fig-
ure 5 shows Blowup(G(5, 1);C5) and Blowup(G(6, 1);C6). We verify that both families satisfy
the Berge-Fulkerson Conjecture.

Theorem 1. For every n ≥ 3, all SemiBlowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy the Berge-Fulkerson Conjecture.

Proof sketch. Let G be a semi blowup as stated in the hypothesis. The proof consists of
constructing a labeling of G using labels {1, 2, 3, 4, 5, 6}, such that each edge has two labels
and, for each label, every vertex is incident with an edge carrying the label. The construction

(a) Graph B.

Conjecture [2]. Snarks have also proved their potential as counterexamples by refuting eight
published conjectures [1]. Some families of snarks have been shown to verify Berge-Fulkerson
Conjecture, such as the Flower snarks [2, 3, 6], the Goldberg snarks [3, 6], the generalized
Blanuša snarks [3], the Szekeres snark [3], a family constructed with the dot product [2], and
a family of Loupekine Snarks [8].

2 Semi blowup and blowup snarks

J. Hägglund [5] described two constructions of snarks, which are reviewed in this section.
Let B be the graph obtained by removing two adjacent vertices from the Petersen graph, as

indicated in Figure 1(a). The degree-two vertices of B are a, b, c, d. Let G be a bridgeless cubic
graph, with a 2-regular subgraph S. Take a cycle C of S, and let C = v1v2 . . . vk. Remove the
edges of C. Take k copies B1, . . . , Bk of B. Indices greater than k are taken modulo k. In order
to construct a semi blowup G′ of (G,S), proceed as follows. For each i ∈ {1, 2, . . . , k}, make vi
adjacent to vertex a of Bi and to vertex b of Bi+1. Also, make vertex c of Bi adjacent to vertex
d of Bi+1. Repeat this operation, illustrated in Figure 1(b), for every cycle of S. The resulting
graph G′ is denoted by SemiBlowup(G,S), adopting Hägglund’s notation. Now, to construct
a blowup G′′ of (G,S), proceed in a slightly different manner. For each i ∈ {1, 2, . . . , k}, add
vertices ui and wi, and edges uivi and viwi. From Bi, make vertex a adjacent to ui, and make
vertex c adjacent to wi. From Bi+1, make vertex b adjacent to ui, and make vertex d adjacent
to wi. Repeat this process, illustrated in Figure 1(c), for every cycle of S. The resulting graph
G′′ is denoted by Blowup(G,S).

a b

cd

(a) Graph B.

aa bb

ccd d

vi−1 vi vi+1

(b) Construction of a semi blowup snark.

a ab b

cc dd

vi−1
vi vi+1

ui−1 ui ui+1

wi−1

wi

wi+1

(c) Construction of a blowup snark.

Figure 1: Illustration of Hägglund’s constructions.

3 Main Results

In this work, we consider two infinite families of semi blowup and blowup snarks constructed
with the well-known generalized Petersen graphs G(n, 1), n ≥ 5, also known as n-Prisms [10].
Consider the generalized Petersen graphs G(5, 1) and G(6, 1) and their respective outer cycles
C5 and C6. Figure 4 shows SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6), while Fig-
ure 5 shows Blowup(G(5, 1);C5) and Blowup(G(6, 1);C6). We verify that both families satisfy
the Berge-Fulkerson Conjecture.

Theorem 1. For every n ≥ 3, all SemiBlowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy the Berge-Fulkerson Conjecture.

Proof sketch. Let G be a semi blowup as stated in the hypothesis. The proof consists of
constructing a labeling of G using labels {1, 2, 3, 4, 5, 6}, such that each edge has two labels
and, for each label, every vertex is incident with an edge carrying the label. The construction

(b) Construction of a semi blowup snark.

Conjecture [2]. Snarks have also proved their potential as counterexamples by refuting eight
published conjectures [1]. Some families of snarks have been shown to verify Berge-Fulkerson
Conjecture, such as the Flower snarks [2, 3, 6], the Goldberg snarks [3, 6], the generalized
Blanuša snarks [3], the Szekeres snark [3], a family constructed with the dot product [2], and
a family of Loupekine Snarks [8].

2 Semi blowup and blowup snarks

J. Hägglund [5] described two constructions of snarks, which are reviewed in this section.
Let B be the graph obtained by removing two adjacent vertices from the Petersen graph, as

indicated in Figure 1(a). The degree-two vertices of B are a, b, c, d. Let G be a bridgeless cubic
graph, with a 2-regular subgraph S. Take a cycle C of S, and let C = v1v2 . . . vk. Remove the
edges of C. Take k copies B1, . . . , Bk of B. Indices greater than k are taken modulo k. In order
to construct a semi blowup G′ of (G,S), proceed as follows. For each i ∈ {1, 2, . . . , k}, make vi
adjacent to vertex a of Bi and to vertex b of Bi+1. Also, make vertex c of Bi adjacent to vertex
d of Bi+1. Repeat this operation, illustrated in Figure 1(b), for every cycle of S. The resulting
graph G′ is denoted by SemiBlowup(G,S), adopting Hägglund’s notation. Now, to construct
a blowup G′′ of (G,S), proceed in a slightly different manner. For each i ∈ {1, 2, . . . , k}, add
vertices ui and wi, and edges uivi and viwi. From Bi, make vertex a adjacent to ui, and make
vertex c adjacent to wi. From Bi+1, make vertex b adjacent to ui, and make vertex d adjacent
to wi. Repeat this process, illustrated in Figure 1(c), for every cycle of S. The resulting graph
G′′ is denoted by Blowup(G,S).

a b

cd

(a) Graph B.

aa bb

ccd d

vi−1 vi vi+1

(b) Construction of a semi blowup snark.

a ab b

cc dd

vi−1
vi vi+1

ui−1 ui ui+1

wi−1

wi

wi+1

(c) Construction of a blowup snark.

Figure 1: Illustration of Hägglund’s constructions.

3 Main Results

In this work, we consider two infinite families of semi blowup and blowup snarks constructed
with the well-known generalized Petersen graphs G(n, 1), n ≥ 5, also known as n-Prisms [10].
Consider the generalized Petersen graphs G(5, 1) and G(6, 1) and their respective outer cycles
C5 and C6. Figure 4 shows SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6), while Fig-
ure 5 shows Blowup(G(5, 1);C5) and Blowup(G(6, 1);C6). We verify that both families satisfy
the Berge-Fulkerson Conjecture.

Theorem 1. For every n ≥ 3, all SemiBlowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy the Berge-Fulkerson Conjecture.

Proof sketch. Let G be a semi blowup as stated in the hypothesis. The proof consists of
constructing a labeling of G using labels {1, 2, 3, 4, 5, 6}, such that each edge has two labels
and, for each label, every vertex is incident with an edge carrying the label. The construction

(c) Construction of a blowup snark.

Figure 1: Illustration of Hägglund’s constructions.

3 Main Results

In this work, we consider two infinite families of semi blowup and blowup snarks constructed
with the well-known generalized Petersen graphs G(n, 1), n ≥ 5, also known as n-Prisms [10].
Consider the generalized Petersen graphs G(5, 1) and G(6, 1) and their respective outer cycles
C5 and C6. Figure 4 shows SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6), while Fig-
ure 5 shows Blowup(G(5, 1);C5) and Blowup(G(6, 1);C6). We verify that both families satisfy
the Berge-Fulkerson Conjecture.

Theorem 1. For every n ≥ 3, all SemiBlowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy the Berge-Fulkerson Conjecture.

Proof sketch. Let G be a semi blowup as stated in the hypothesis. The proof consists of
constructing a labeling of G using labels {1, 2, 3, 4, 5, 6}, such that each edge has two labels

138

and, for each label, every vertex is incident with an edge carrying the label. The construction
uses the labelings of the pieces of a semi blowup depicted in Figure 2. The graph G can be
constructed by joining copies of these pieces cyclically, and then joining them with a cycle of n
vertices. If n is even, then it is enough to use only copies of the piece of graph of Figure 2(a).
Otherwise, it is necessary to use one copy of the piece of graph of Figure 2(b). While joining the
pieces, the labels are maintained. The labeling is easily extended to the central cycle of G. The
labeling of the edges of G thus obtained induces a double cover by six perfect matchings.

Theorem 2. For every n ≥ 3, all Blowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy Berge-Fulkerson Conjecture.

Proof sketch. Similar to the proof of Theorem 1, using the labelings of Figure 3 instead.

Notice that it is possible to extend this result to other families of semi blowup and blowup
snarks. For example, the families obtained by using the generalized Petersen graphs G(4n, 2).

uses the labelings of the pieces of a semi blowup depicted in Figure 2. The graph G can be
constructed by joining copies of these pieces cyclically, and then joining them with a cycle of n
vertices. If n is even, then it is enough to use only copies of the piece of graph of Figure 2(a).
Otherwise, it is necessary to use one copy of the piece of graph of Figure 2(b). While joining the
pieces, the labels are maintained. The labeling is easily extended to the central cycle of G. The
labeling of the edges of G thus obtained induces a double cover by six perfect matchings.

Theorem 2. For every n ≥ 3, all Blowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy Berge-Fulkerson Conjecture.

Proof sketch. Similar to the proof of Theorem 1, using the labelings of Figure 3 instead.

Notice that it is possible to extend this result to other families of semi blowup and blowup
snarks. For example, the families obtained by using the generalized Petersen graphs G(4n, 2).

1,21,2

1,31,3 1,3

1,4

1,4

1,5

1,5

1,5

1,6

2,3

2,3

2,42,4

2,5

2,6
2,6

2,6

3,4

3,5

3,5

3,5

3,64,5

4,6
4,6

4,6

5,6 5,6

(a)

1,2 1,2

1,3

1,31,3

1,3

1,3

1,4

1,4

1,5

1,5

1,5

1,5

1,6
1,61,6

2,3

2,3

2,4

2,4

2,4

2,4
2,5

2,5
2,5

2,6

2,6

2,6

2,6
3,4

3,4
3,4

3,5

3,5

3,5

3,53,64,5

4,6

4,6

4,6
4,6

5,6

5,6

(b)

Figure 2: Semi blowup coverings.

1,2

1,2

1,2

1,2

1,2

1,2

1,3

1,3
1,4

1,5

1,6
2,3

2,4

2,4

2,5 2,6

3,4

3,4

3,4

3,4

3,4

3,4

3,53,6

4,5

4,6

5,65,6

5,6

5,6

5,6

5,6

5,6

5,6
5,6

5,6

(a)

1,2

1,2

1,21,2

1,2

1,2

1,2 1,2

1,3

1,3
1,4

1,4

1,5

1,5

1,6
1,6

1,6

2,3
2,3

2,4

2,4
2,5

2,5

2,5

2,62,6

3,4 3,4

3,4

3,4
3,4

3,4

3,4

3,4

3,43,53,5 3,6

3,6

4,5

4,5

4,6

4,65,6
5,65,6

5,6

5,6

5,6

5,6
5,6

5,6

5,6

(b)

Figure 3: Blowup coverings.

Figure 4: Examples of Theorem 1: SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6).

(a)

uses the labelings of the pieces of a semi blowup depicted in Figure 2. The graph G can be
constructed by joining copies of these pieces cyclically, and then joining them with a cycle of n
vertices. If n is even, then it is enough to use only copies of the piece of graph of Figure 2(a).
Otherwise, it is necessary to use one copy of the piece of graph of Figure 2(b). While joining the
pieces, the labels are maintained. The labeling is easily extended to the central cycle of G. The
labeling of the edges of G thus obtained induces a double cover by six perfect matchings.

Theorem 2. For every n ≥ 3, all Blowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy Berge-Fulkerson Conjecture.

Proof sketch. Similar to the proof of Theorem 1, using the labelings of Figure 3 instead.

Notice that it is possible to extend this result to other families of semi blowup and blowup
snarks. For example, the families obtained by using the generalized Petersen graphs G(4n, 2).

1,21,2

1,31,3 1,3

1,4

1,4

1,5

1,5

1,5

1,6

2,3

2,3

2,42,4

2,5

2,6
2,6

2,6

3,4

3,5

3,5

3,5

3,64,5

4,6
4,6

4,6

5,6 5,6

(a)

1,2 1,2

1,3

1,31,3

1,3

1,3

1,4

1,4

1,5

1,5

1,5

1,5

1,6
1,61,6

2,3

2,3

2,4

2,4

2,4

2,4
2,5

2,5
2,5

2,6

2,6

2,6

2,6
3,4

3,4
3,4

3,5

3,5

3,5

3,53,64,5

4,6

4,6

4,6
4,6

5,6

5,6

(b)

Figure 2: Semi blowup coverings.

1,2

1,2

1,2

1,2

1,2

1,2

1,3

1,3
1,4

1,5

1,6
2,3

2,4

2,4

2,5 2,6

3,4

3,4

3,4

3,4

3,4

3,4

3,53,6

4,5

4,6

5,65,6

5,6

5,6

5,6

5,6

5,6

5,6
5,6

5,6

(a)

1,2

1,2

1,21,2

1,2

1,2

1,2 1,2

1,3

1,3
1,4

1,4

1,5

1,5

1,6
1,6

1,6

2,3
2,3

2,4

2,4
2,5

2,5

2,5

2,62,6

3,4 3,4

3,4

3,4
3,4

3,4

3,4

3,4

3,43,53,5 3,6

3,6

4,5

4,5

4,6

4,65,6
5,65,6

5,6

5,6

5,6

5,6
5,6

5,6

5,6

(b)

Figure 3: Blowup coverings.

Figure 4: Examples of Theorem 1: SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6).

(b)
Figure 2: Semi blowup coverings.

uses the labelings of the pieces of a semi blowup depicted in Figure 2. The graph G can be
constructed by joining copies of these pieces cyclically, and then joining them with a cycle of n
vertices. If n is even, then it is enough to use only copies of the piece of graph of Figure 2(a).
Otherwise, it is necessary to use one copy of the piece of graph of Figure 2(b). While joining the
pieces, the labels are maintained. The labeling is easily extended to the central cycle of G. The
labeling of the edges of G thus obtained induces a double cover by six perfect matchings.

Theorem 2. For every n ≥ 3, all Blowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy Berge-Fulkerson Conjecture.

Proof sketch. Similar to the proof of Theorem 1, using the labelings of Figure 3 instead.

Notice that it is possible to extend this result to other families of semi blowup and blowup
snarks. For example, the families obtained by using the generalized Petersen graphs G(4n, 2).

1,21,2

1,31,3 1,3

1,4

1,4

1,5

1,5

1,5

1,6

2,3

2,3

2,42,4

2,5

2,6
2,6

2,6

3,4

3,5

3,5

3,5

3,64,5

4,6
4,6

4,6

5,6 5,6

(a)

1,2 1,2

1,3

1,31,3

1,3

1,3

1,4

1,4

1,5

1,5

1,5

1,5

1,6
1,61,6

2,3

2,3

2,4

2,4

2,4

2,4
2,5

2,5
2,5

2,6

2,6

2,6

2,6
3,4

3,4
3,4

3,5

3,5

3,5

3,53,64,5

4,6

4,6

4,6
4,6

5,6

5,6

(b)

Figure 2: Semi blowup coverings.

1,2

1,2

1,2

1,2

1,2

1,2

1,3

1,3
1,4

1,5

1,6
2,3

2,4

2,4

2,5 2,6

3,4

3,4

3,4

3,4

3,4

3,4

3,53,6

4,5

4,6

5,65,6

5,6

5,6

5,6

5,6

5,6

5,6
5,6

5,6

(a)

1,2

1,2

1,21,2

1,2

1,2

1,2 1,2

1,3

1,3
1,4

1,4

1,5

1,5

1,6
1,6

1,6

2,3
2,3

2,4

2,4
2,5

2,5

2,5

2,62,6

3,4 3,4

3,4

3,4
3,4

3,4

3,4

3,4

3,43,53,5 3,6

3,6

4,5

4,5

4,6

4,65,6
5,65,6

5,6

5,6

5,6

5,6
5,6

5,6

5,6

(b)

Figure 3: Blowup coverings.

Figure 4: Examples of Theorem 1: SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6).

(a)

uses the labelings of the pieces of a semi blowup depicted in Figure 2. The graph G can be
constructed by joining copies of these pieces cyclically, and then joining them with a cycle of n
vertices. If n is even, then it is enough to use only copies of the piece of graph of Figure 2(a).
Otherwise, it is necessary to use one copy of the piece of graph of Figure 2(b). While joining the
pieces, the labels are maintained. The labeling is easily extended to the central cycle of G. The
labeling of the edges of G thus obtained induces a double cover by six perfect matchings.

Theorem 2. For every n ≥ 3, all Blowup(G(n, 1);Cn) such that Cn is the outer cycle of
G(n, 1) satisfy Berge-Fulkerson Conjecture.

Proof sketch. Similar to the proof of Theorem 1, using the labelings of Figure 3 instead.

Notice that it is possible to extend this result to other families of semi blowup and blowup
snarks. For example, the families obtained by using the generalized Petersen graphs G(4n, 2).

1,21,2

1,31,3 1,3

1,4

1,4

1,5

1,5

1,5

1,6

2,3

2,3

2,42,4

2,5

2,6
2,6

2,6

3,4

3,5

3,5

3,5

3,64,5

4,6
4,6

4,6

5,6 5,6

(a)

1,2 1,2

1,3

1,31,3

1,3

1,3

1,4

1,4

1,5

1,5

1,5

1,5

1,6
1,61,6

2,3

2,3

2,4

2,4

2,4

2,4
2,5

2,5
2,5

2,6

2,6

2,6

2,6
3,4

3,4
3,4

3,5

3,5

3,5

3,53,64,5

4,6

4,6

4,6
4,6

5,6

5,6

(b)

Figure 2: Semi blowup coverings.

1,2

1,2

1,2

1,2

1,2

1,2

1,3

1,3
1,4

1,5

1,6
2,3

2,4

2,4

2,5 2,6

3,4

3,4

3,4

3,4

3,4

3,4

3,53,6

4,5

4,6

5,65,6

5,6

5,6

5,6

5,6

5,6

5,6
5,6

5,6

(a)

1,2

1,2

1,21,2

1,2

1,2

1,2 1,2

1,3

1,3
1,4

1,4

1,5

1,5

1,6
1,6

1,6

2,3
2,3

2,4

2,4
2,5

2,5

2,5

2,62,6

3,4 3,4

3,4

3,4
3,4

3,4

3,4

3,4

3,43,53,5 3,6

3,6

4,5

4,5

4,6

4,65,6
5,65,6

5,6

5,6

5,6

5,6
5,6

5,6

5,6

(b)

Figure 3: Blowup coverings.

Figure 4: Examples of Theorem 1: SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6).

(b)
Figure 3: Blowup coverings.

Figure 4: Examples of Theorem 1: SemiBlowup(G(5, 1);C5) and SemiBlowup(G(6, 1);C6).

139

Figure 5: Examples of Theorem 2: Blowup(G(5, 1);C5) and Blowup(G(6, 1);C6).

Concluding Remarks In this work, we considered two infinite families of blowup and semi
blowup snarks constructed with the well-known generalized Petersen graphs G(n, 1). We con-
tributed with the celebrated Berge-Fulkerson Conjecture by establishing that both families
verify this conjecture, providing further evidences together with other snark families, such as
the generalized Blanuša snarks [3] and a family of Loupekine snarks [8]. Furthermore, we could
extend this result to other families of semi blowup and blowup snarks by using, for example,
the generalized Petersen graphs G(4n, 2).

Acknowledgments The authors would like to thank Myriam Preissmann for the fruitful
comments on a preliminar version of this work.

References

[1] G. Brinkmann, J. Goedgebeur, J. Hägglund, and K. Markström. Generation and properties of
snarks. To appear in J. Comb. Theory B, 2011.

[2] U. A. Celmins. A study of three conjectures on an infinite family of snarks. Technical Report
CORR-79-19, Dept. of Combinatorics and Optimization, University of Waterloo, 1979.

[3] J. L. Fouquet and J. M. Vanherpe. On Fulkerson conjecture. Discuss. Math. Graph Theory,
31:253–272, 2011.

[4] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1:168–194,
1971.

[5] J. Hägglund. On snarks that are far from being 3-edge colorable. arXiv:1203.2015, 2012.

[6] R. Hao, J. Niu, X. Wang, C.-Q. Zhang, and T. Zhang. A note on Berge-Fulkerson coloring. Discrete
Math., 309:4235–4240, 2009.

[7] T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley Interscience, 1995.

[8] K. Karam and C. N. Campos. Fulkerson’s Conjecture and Loupekine’s Snarks. Proc. 11th CTW
2012, Munich, Germany, 2012.

[9] P. G. Tait. Remarks on colouring of maps. Proc. Royal Soc. Edinburgh Ser. A, 10:729, 1880.

[10] M. E. Watkins. A theorem on Tait colorings with an application to the generalized Petersen graphs.
J. Combin. Theory, 6:152–164, 1969.

140

An extension of the Collatz function

Roland Kaschek1 and Alexander Krumpholz2,3

1The University of the Faroe Islands
2CSIRO, Canberra

3Australian National University, Canberra

1 The Collatz function and conjecture

Triggered by Lothar Collatz one has come to study the Collatz function C : N→ N, n 7→ n/2,
if n is even, and n 7→ 3n+ 1, else. The conjecture that for any n ∈ N there exists an m ∈ N,
such that Cm(n) = 1, among others, is called the Collatz conjecture. Related introductory
and overview material for example is in [6, 8, 10, 13, 5]. According to [8], p. 2 it is unknown
yet whether the Collatz conjecture is true. However, Schorer’s proof attempts require closer
scrutiny [11].

For every integer z 6= 0 we denote by q(z) and p(z) the largest odd divisor of z and the
largest power of 2 that divides z, respectively. We define p(0) = 0 and q(0) = 1. Therefore
z = p(z)q(z) for any integer z. The strong Collatz function (see also [10]) f maps odd integers
z to 3z + 1, and even integers z to q(z). The strong Collatz sequence Sz is the sequence
{fm(z)}m∈N. We call z its seed. The runway of Sz starts at z and goes to the first number
that occurs in Sz repeatedly. The part of Sz between these two occurrences of that number
is called cycle and that number is called a root ([1]) of it. The runway length is the number
of iterations required to get from the seed to the root. The cycle length is the number of
iterations required for any of its roots to return to it.

2 Observations

In [4, 3, 9] generalizations of the Collatz function have been discussed. We extend C to the
rational numbers. For this we consider a rational number r = a

b with gcd(a, b) = 1 as “even”
if a or b is even and as “odd” otherwise. The predicates “odd” and “even” are well-defined.

Definition 1. For any rational number r = a
b ∈ Q with gcd(a, b) = 1 we define f∗(r) as 3a+b

b

if r is odd, as q(a)
b if a is even and a

q(b) , else. We call f∗ : Q→ Q, r 7→ f∗(r) the strong Collatz
function on Q.

The restriction of f∗ to N equals f , i.e., f∗|N = f . Therefore we denote f∗ by f . In the
Figure 1 we show the graph of f and one of Tempkin’s extension of C to R. The function f
attains values on the straight lines y = 3x + 1, y = 2x and y = x/2 and Tempkin’s function
is defined by T (x) = 7x+2

4 + 5x+2
4 cos(π(x + 1)). A similar extension of C to R namely

Ch(x) = x + 1
4 − 2x+1

4 cos(πx) was proposed by Chamberland (see for all this [4]). We feel
that our definition is closer in spirit to C than Tempkin’s function. According to Chamberland

141

Figure 1: One of Tempkin’s extensions of C to R as opposed to ours.

Tempkin, with regard to another, piece-wise defined, extension of C to R proves that it has
divergent Series for seed of the form k

5 with k 6≡ 0 (mod 5). Our strong Collatz function does,
however, not diverge on these seeds.

Remark 2. For any set S, set F of functions on S and any function ϕ : S → F we define
Φ : S → S, s 7→ φ(s)(s). Suppose S = Q and F = {r, s, t} where r, s and t are functions on Q
with r(x) = 3x+1, s(x) = x/2 and t(x) = 2x, respectively. If then φ maps the rational number
a
b with gcd(a, b) = 1 to r, s and t if a, b is odd, if a is even and b is even, respectively, then
we get Φ = C. Moreover we get an interesting function that enumerates the Collatz sequences
if we define Φ∗ : N0 × Q → Q, that maps a pair (n, x) to x if n = 0 and to Φ(Φ∗(n − 1, x)),
otherwise. It is clear that Φ∗(n, x) = Cn(x), for any n ∈ N0 and x ∈ Q. Note that we here
refer to the original Collatz idea so that application of C, if at all, reduces the multiplicity of
2 as divisor by just 1.
For x = 1

3 , for example, we get Φ∗(0, 13) = 1
3 , Φ∗(1, 13) = ϕ(13)(13) = r(13) = 2. It continues

then with Φ∗(2, 13) = ϕ(Φ∗(1, 13))(Φ∗(1, 13)) = ϕ(2)(2) = s(2) = 1. Now we are already in
the loop since Φ∗(3, 13) = ϕ(Φ∗(2, 13))(Φ∗(2, 13)) = ϕ(1)(1) = r(1) = 4 and finally Φ∗(4, 13) =
ϕ(Φ∗(3, 13))(Φ∗(3, 13)) = ϕ(4)(4) = s(4) = 2.

Remark 3. We have implemented a system of Python functions for computing strong Collatz
sequences. Our related findings are: First (Figure 2) the runway-length as function of the seed
appears as nearly space filling. Further studies seem to suggest that the blued area slowly, but
steadily, extends towards larger ordinate values as the step-width decreases. Second (Figure
3) the cycle-length as a function of the seed is much more sparse and appears to occur in
defined bands. Third (Figure 4) shows the cycles reached by the seed: cell′s column index

cell′s row index . The
horizontal patterns indicate that the cycle is stronger effected by the denominator. Fourth, each
seed seems to have an attracting cycle. Fifth, the runway and cycle sown by 255113845967565586

85037948655855195
have the length 1114745 and 438480, respectively. Furthermore the runway and cycle sown by
11990350760475582496
3996783586825194165 have the length 487429 and 4762800, respectively.

Acknowledgements

We thank Frederick Magata for an interesting discussion we had on the subject.

142

Figure 2: Runway-length as function of seed, step-width = 0.0001.

Figure 3: Cycle-length as function of seed, step-width = 0.0001.

Figure 4: Cycle sown by a cell’s column index divided by its row index.

143

References

[1] T. Allen: Characteristics of counter example loops in the Collatz conjecture. Master
thesis, The University of Central Missouri, May 2012.

[2] S. Andreis, C. Masalagiu: About the Collatz conjecture. Acta Informatica 35 (1998):
167 - 179.

[3] B. Brent: 3x+1 dynamics on rationals with fixed denominator. arXiv:math/0204170v1,
Apr 13th. 2002.

[4] M. Chamberland: An update on the 3x+1 problem. Internet publication, undated.

[5] J. Doe: Collatz conjecture. https://en.wikipedia.org/wiki/Collatz conjecture, ac-
cessed: Mar 7th. 2013

[6] J. Lagarias: The 3x+1 problem and its generalizations. The American Mathematical
Monthly, 92, 1 (1985):3 - 23.

[7] J. Lagarias: The 3x+1 problem: an annotated bibliography (1963 - 1999).
arXiv:math/0309224v13, Jan 11th. 2011.

[8] J. Lagarias: The 3x+1 problem: an annotated bibliography, II. arXiv:math/0608208v6,
Feb 12th. 2012

[9] J. Lesieutre: On a generalization of the Collatz conjecture. Research Science Institute,
Jul 31st. 2007.

[10] P. Schorer: Are we near a solution to the 3x+1 problem? A discussion of several
possible strategies.http://www.occampress.com/. Oct 26th. 2012.

[11] P. Schorer: A solution to the 3x+1 problem. http://www.occampress.com/. Feb 10th.
2013.

[12] M. Sinisalo: On the minimal number of cycle lengths of the Collatz sequences. Depart-
ment of Mathematical Sciences, University of Oulu, preprint. Jun 2003.

[13] E. Weisstein: Collatz problem. MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html, accessed on March 7th.
2013.

144

Constructing Strategies in Subclasses of
McNaughton Games

Imran Khaliq1 and Gulshad Imran2

1Department of Computer Science, 2Department of Mathematics
The University of Auckland, New Zealand

We present algorithms for extracting winning strategies in subclasses of Mc-
Naughton games called update games and fully separated games. We also present
an algorithm that solves update games with a bounded number of nondeterministic
nodes in linear time which is an improvement over a quadratic time algorithm in
update games.

Key words: Games on finite graphs, Müller games, finite state strategies

1 Introduction and Preliminaries

Recent years have seen a growing interest in two-player infinite games that are played on
finite graphs. These games were first introduced by McNaughton in [1] motivated by the work
of Gurevich and Harrington [2]. These games are not only natural models for reactive and
concurrent systems [3] but also are used as a tool for analysis, synthesis and verification of
such systems [4, 5]. Such games have also close connections in automata and logic [6].

In [1], McNaughton proved that winning strategies in his games can be simulated by a finite
state automata. McNaughton games were further studied by Nerode, Rammel and Yakhnis and
extracted winning strategies in concurrent programs [3]. Dinneen and Khoussainov investigated
various subclasses of McNaughton games including update games and fully separated games
[7, 8]. In both update games and fully separated games winner can be detected in polynomial
time. In this paper we present procedures for extracting winning strategies in update games
and fully separated games. We also show that winner can be detected in linear time in an
update game with bounded number of nondeterministic nodes which is an improvement over
the algorithm in [7].

The games we are interested in is a tuple (G,Ω), where G = (V,E) is a finite directed
bipartite graph with V = V0 ∪ V1, V0 ∩ V1 = ∅, E ⊆ V0 × V1 ∪ V1 × V0 and Ω ⊆ 2V is the
winning condition. The elements of Ω are called target sets. We stipulate that a player can
always make a move. Intuitively, the players play the game by moving a token along the edges
of the graph. At initial round, the token is placed on a node v0 ∈ V . At any round of the play,
if the token is placed on a Player σ’s node v, where σ ∈ {0, 1}, then Player σ chooses u such
that (v, u) ∈ E, moves the token to u and the play continues on to the next round. Formally,
a play (starting from v0) is a sequence v0, v1, v2, . . . such that (vi, vi+) ∈ E for all i ∈ N. We
say Player 0 wins a play if the set containing all nodes that appear in the play infinitely often
coincides with one of a target set in Ω; otherwise, Player 1 wins the play. These games are

145

called McNaughton games or games with Müller winning conditions. We simply refer to them
as games and denote by Γ. A strategy for Player σ, σ ∈ {0, 1}, is a function that takes as
input initial segments of plays v0, v1, . . . vk where vk ∈ Vσ and outputs some vk+1 such that
(vk, vk+1) ∈ E. A game Γ is determined if one of the players has a winning strategy starting
at any given node v of the game. To solve a game means to find all positions from which a
given player wins. We define finite state strategies in the following.

Definition 1. Let Γ be a game. (1) A finite state strategy for Player σ is given by a finite I/O
automaton S = (Q, q0, δ) where Q is the finite set of states, q0 ∈ Q is the initial state, and
δ : Q×Vσ → Q×V1−σ is the transition function. (2) A play ρ = v0, v1, v2, . . . is consistent with
S if there exists a sequence of states q0, q1, q2, . . . such that for all i ∈ N we have the following.
If vi ∈ Vσ, then δ(qi, vi) = (qi+1, vi+1); If vi ∈ V1−σ, then qi+1 = qi. Thus, the strategy does
not change its state when Player (1−σ) makes moves. (3) The strategy S is a k-state strategy
if |Q| = k. One state strategies are also called memoryless strategies. Thus, a memoryless
strategy for Player σ is simply a function S : Vσ → V1−σ.

Let Γ be a game, σ ∈ {0, 1}, and X ⊆ V . The σ-attractor set of X, denoted Attrσ(X), is
the set of all nodes v ∈ V that satisfies the following: Player σ has a memoryless strategy S
such that every play consistent with S that begins from v will eventually reach some node in
X. The set Attrσ(X) can be computed in time O(|V |+ |E|) [6]. If the tuple (V ′0 ∪ V ′1 , E′,Ω′),
where V ′0 = V0 ∩X, V ′1 = V1 ∩X, E′ = E ∩ (X ×X) and Ω′ = Ω ∩ 2X , is a game then we call
this a subgame of Γ determined by X.

2 Results

We focus on subclasses of McNaughton games called update games and fully separated games.
An emphasis is placed on update games. An update game is a game where Ω = {V }. If Player
0 is the winner of an update game then we say the update game is an update network. We
investigate the following three interrelated problems:

Problem 1: How hard is it to decide which players has a winning strategy?
Problem 2: What is the size of a finite state winning strategy?
Problem 3: How efficiently can update games be solved?

We give procedures for all the three problems. On of the key ideas, we use, is the concept
of forced cycles, first introduced in [7]. A forced cycle is a cycle where Player 0 has full control
whether to stay in the cycle or to leave it.

Problem 1: To solve the first problem, a sequence of contracted games, that begins from the
original update game, is constructed. For constructing this sequence we use the contraction
operator. The operator to which an update game and a forced cycle in the game is input,
outputs a new game. We call this new game the contracted game. The contracted game is
constructed from the previous game by replacing the forced cycle by a forced cycle of length
2 called spike. The operator preserves the property of being an update network (or not being
one). The sequence of contracted games is continued until no contraction of non-spike forced
cycle can be made. If the last game in the sequence contains exactly one Player 0 node, then
Player 0 wins the original game if and only if Player 0 wins the last game in the sequence. A
game with exactly one Player 0 node u is an update network if and only if for every Player 1

146

node v there is an edge from u to v. We call such games star-networks. Thus, we obtain the
following result.

Theorem 1 (Deciding Update Games). An update game is an update network if and only if
the game can be transformed by a sequence of contractions of forced cycles into a star-network.
Moreover, there exists an algorithm that constructs this sequence in quadratic time on the size
of the underlying graph.

Problem 2: To solve the second problem we first prove that all update networks can be
generated from star-networks by unfolding a series of spikes. For unfolding a spike we use
unfolding operator. The unfolding operator is an inverse of contraction operator. Unfolding
operator also preserves the property of being update network (or not being one). In the solution
of the second problem we use the following theorem.

Theorem 2 (Building Update Networks). All update networks can be obtained by consecutively
applying the unfolding operation to star-networks.

Given an update game, we build our finite state automaton that will determine a winning
strategy for the winner. Assume a chain of contracted games is given. We prove that, in a
star-network, the number of states of a winning strategy is equal to the number of Player 1’s
nodes in the star-network. This number of states increases by at most 1 for every unfolding of
a spike in the sequence. If Player 1 wins the game, the strategy is even simpler, Player 1 has
a memoryless winning strategy.

Theorem 3 (Extracting Winning Strategies). Suppose a sequence of contracted games of length
k is given. (1) Assume that the last game in the sequence is a star-network with t number of
Player 1’s nodes. Then, in the original game, Player 0 has a winning strategy with at most
t + k number of states. (2) Assume that the last game in the sequence is not a star-network.
Then, in the original game, Player 1 has a memoryless winning strategy.

Problem 3: For the third problem we consider a special case of update games where at most
k number of Player 1’s nodes have more than one out going edges, where k ≥ 1 is fixed. We
call such nodes nondeterministic nodes. Thus, the update games we consider depend on the
parameter k. We use a different approach to solve these games as opposed to the contraction
of forced cycles. The iterated forced cycle contraction method may require quadratic time as
it does not make use of nondeterministic nodes. In our procedure, certain type of strongly
connected subgames are replaced by spikes in order to reduce the size of the game. The
derivative of an update game is obtained from the update game by replacing all the strongly
connected subgames in the update game by spikes. The procedure constructs a sequence of
derivatives. We then prove that an update game is update network if and only if its derivative
is so. We also prove that in an update network at least one of the nondeterministic nodes
becomes deterministic in its derivative. Therefore, the sequence of derivatives stops at the
stage where there is no nondeterministic node or the number of nondeterministic nodes in the
previous game is equal to the number of nondeterministic nodes in the current game. As a
result, we obtain the following theorem.

Theorem 4 (Deciding Update Games: Improved). Given an update game Γ with k nondeter-
ministic nodes of Player 1, there exists an algorithm that constructs the sequence of derivatives
in O(|V | + |E|) time. Here the asymptotic constant is k. Moreover, the game Γ is an update

147

network if and only if the last game in the sequence does not contain any nondeterministic
node of Player 1 and underlying graph to this game is strongly connected component.

Below we present a procedure for extract winning strategies for the winners in fully separated
games. Our procedure embeds the above algorithm given in Theorem 3. Fully separated games
have been studied by Hajimi Ishihara and Bakhadyr Khoussainov in [8]. Formally, a game Γ is
called fully separated game if for each target set T ∈ Ω there is a node wT , called separator such
that wT ∈ T with wT /∈ T ′ for all T ′ 6= T . The procedure that solves fully separated games is
recursive one. One solves the game by constructing several smaller games. After solving these
games, one then constructs the solution to the desired game in terms of the solutions of these
smaller games. The procedure proceeds recursively as follows: It first identifies all the sets in
winning condition such that the subgames over these sets form update networks. Using these
subgames, a set N containing winning nodes for Player 0 is constructed. Note that N is of the
form Attr0(Attr0(T

′)∪Attr0(T ′′)∪ · · ·∪Attr0(T ′′′)), where each target set is update network. A
new game Γ′ is obtained from the previous game by deleting N from the graph of the previous
game. We declare a target set T in the previous game to be a target set in the new game if T
is properly contained in V ′ of Γ′. The procedure stops when either N contains all the nodes
in the current underlying graph or the newly constructed game does not contain a target set.

Theorem 5 (Deciding Fully Separated Games). There exists an algorithm that solves fully
separated games in O(k · (|V |+ |E|)) time, where k is cardinality of the winning condition.

Before we present a procedure for extracting winning strategies in fully separated games we
mention the following lemma that is true for any McNaughton game.

Lemma 1. Let Γ be a McNaughton game. Then the following holds true. (1) Let S be t-state
winning strategy from X ⊆ V for Player σ, σ ∈ {0, 1}, in Γ. Then there exists a winning
strategy S ′ with the same number t of states from Attrσ(X) for Player σ in Γ. (2) Assume that
Player 0 has winning strategies f and g such that f is s1-state winning strategy from a 1-trap
A and g is a s2-state winning strategy from a 1-trap B. Then Player 0 has a max{s1, s2}-state
winning strategy from A ∪B.

Theorem 3, Theorem 5 and Lemma 1 allows us to extract a winning strategy for the winner
in a fully separated game through the following theorem.

Theorem 6 (Extracting Winning Strategies). Let Γ be fully separated game. (1) Assume
Player 0 wins the game. Let N1, N2, . . ., Nr be all sets constructed at the end of execution
of the algorithm. Let Si be ti-state winning strategy from Ni for Player 0 in Γ, for all i =
1, 2, . . . , r. Then Player 0 has a winning strategy with max{ti | i = 1, 2, . . . , r} number of
states from the union of all Ni. (2) Assume Player 1 wins the game. Then Player 1 has a
memoryless winning strategy from the set V \ ∪ri=1Ni.

References

[1] McNaughton, R.: Infinite Games Played on Finite Graphs. Annals of Pure and Applied Logic. vol.
65, pp. 149 – 184, (1993)

[2] Gurevich, Y., Harrington, L.: Trees, Automata and Games. In: Pro. of 14th ACM Symposium on
the Theory of Computing. STOCS. pp. 60 – 65 (1982)

148

[3] Nerode, A., Remmel, J., Yakhnis., A.: McNaughton Games and Extracting Strategies for Concur-
rent Programs. Annals of Pure and Applied Logic. vol. 78, pp. 203 – 242 (1996)

[4] Emerson, E.A., Jutla. C.S., Sistla, A.P.: On Model Checking for Fragments of µ-calculus. LNCS
697, pp. 385 – 396 (1993)

[5] Thomas, W.: Infinite games and verification. LNCS 2404, pp. 58 – 64, Springer (2002)

[6] Grädel, E., Thomas, W., Wilke, T.: Automata, logics, and infinite games: A Guide to Current
Research. LNCS 2500, Springer, Heidelberg. (2002)

[7] Dinneen, M.J., Khoussainov, B.: Update Games and Update Networks. Journal of Discrete Algo-
rithms. vol.1, issue 1. (2003)

[8] Ishihara, H., Khoussainov, B.: Complexity of Some Infinite Games Played on Finite Graphs. LNCS
2573, pp. 270 – 281, WG (2002)

149

Toward a precise integrality gap for
triangle-free 2-matchings

Philipp Klodt1 and Anke van Zuylen2

1 Max-Planck-Institut für Informatik
2The College of William & Mary

We consider the traveling salesman problem (TSP) with edge costs that are
symmetric and obey the triangle inequality. The integrality gap for the subtour
LP relaxation is not known exactly, but Schalekamp, Williamson and Van Zuylen
showed that the worst-case ratio of an optimal 2-matching to an optimal solution
to the subtour LP is at most 10

9 . For the case that the support graph of a F2M is
2-connected, they show that the same ratio holds for the gap between 2-matchings
and F2Ms, which is an even stronger statement.

We extend the latter result to triangle-free 2-matchings and are able to prove that
the worst-case ratio is 7

6 provided that the F2M is subtour-feasible. The triangle-
free case can be seen as a first step towards an extension to the gap between the
TSP and its subtour relaxation.

1 Introduction

We consider a complete undirected graph with vertex set V , edge set E and edge costs c :
E → R+ which are symmetric and obey the triangle inequality. The problem of finding
the minimum-cost edge set (‘tour’) that visits each vertex exactly once is called the traveling
salesman problem (TSP). Let δ(S) denote the set of edges with exactly one endpoint in S ⊂ V .
Then the subtour LP relaxation of the TSP is given by the following linear program (LP).

(SUBT)

minimize
∑

c(e)x(e)

subject to
∑

e∈δ(i)
x(e) = 2 ∀i ∈ V (1)

∑
e∈δ(S)

x(e) ≥ 2 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 3 (2)

0 ≤ x(e) ≤ 1 ∀e ∈ E (3)

Determining the precise integrality gap of the subtour LP relaxation for the TSP is an
important open question, on which — despite significant research efforts — little progress has
been made in over 30 years. Christofides’s algorithm [3] finds a tour of cost at most 3

2 times
the optimum, and Wolsey [11] and Shmoys and Williamson [10] show that this implies an
upper bound of 3

2 on the integrality gap as well. Examples are known that show that the

151

integrality gap is at least 4
3 , and a famous conjecture (see for example Goemans [5]) states that

the integrality gap is exactly 4
3 for inputs that are symmetric and obey the triangle inequality.

Recently, progress has been made on approximating the TSP on graph metrics; in such
metrics, there is an underlying unweighted graph, and the cost between i and j is equal to the
length of the shortest path in this graph. The current best approximation guarantee is 7

5 = 1.4
by Sebő and Vygen [9]. This implies an upper bound of 7

5 on the integrality gap for graph
metrics as well. However, for general metrics, the status of the integrality gap of the subtour
LP for the TSP has not changed.

Schalekamp, Williamson and Van Zuylen [8] resolve a conjecture by Boyd and Carr [2] by
showing that the worst-case ratio of the minimum cost 2-matching compared to the optimal
value of the subtour LP is equal to 10

9 . They remark that the worst-case ratio is attained for
an instance in which the optimal subtour LP solution is a fractional 2-matching. A fractional
2-matching (F2M) is a basic solution to the LP obtained by dropping the subtour elimination
constraints (2). It is known that fractional 2-matchings are half integral, and that the edges
with x(e) = 1

2 form vertex-disjoint odd cycles, connected by paths of edges with x(e) = 1
(Balinski [1]).

Schalekamp et al. [8] note that, even if we assume that the worst instances for the subtour
LP integrality gap are F2Ms, then it is still not known what the exact integrality gap is.
Markovic [7] considers the special case when the F2M consists of exactly two odd cycles of
edges with x(e) = 1

2 that have equal size, that are connected by paths of edges with x(e) = 1.
Even for this very special case, it is not known whether the integrality gap is at most 4

3 , except
for the case when the two odd cycles have at most 5 vertices each.

Given this state of affairs, we go back to the minimum cost 2-matching problem, i.e. the
problem of finding a minimum cost subset of the edges such that every vertex is incident to
exactly two edges. A k-cycle free 2-matching is a 2-matching in which each component has
more than k vertices. Of course, a tour is a k-cycle free 2-matching for any k ≤ n − 1. A
natural question would thus be to ask for which values of k we can determine the worst-case
ratio of the minimum cost of a k-cycle free 2-matching to the value of the subtour LP. The
triangle-free 2-matching problem is an interesting problem in this context, as, contrary to the
minimum cost 2-matching problem, it is unknown whether the problem is in P or not. The
unweighted case has a polynomial time algorithm due to Hartvigsen [6].

We extend the results of Schalekamp et al. [8] and exactly determine the worst-case ratio of
the minimum cost triangle-free 2-matching and a F2M that satisfies the subtour elimination
constraints (2). We leave the question of determining the precise ratio of the minimum cost
triangle-free 2-matching to the subtour LP (without any assumptions on the structure of the
LP solution) as an intriguing open problem.

2 Gap between triangle-free 2-matchings and subtour-feasible
F2Ms

2.1 Prerequisites

A graphical 2-matching (G2M) is a relaxaton of a 2-matching that allows vertices to have
degree two or four, and edges to have zero, one or two copies. A G2M is called triangle-free
if it does not contain any cycle of length 3. We will say a fractional 2-matching (F2M) is
subtour-feasible if it satisfies the subtour elimination constraints (2).

152

(a) Graph with cost 1 on the solid edges and cost 0
on the dashed ones. The optimal F2M has
x-value 1 on the solid edges and 1

2
on the

dashed ones, its cost is 12. Note that it satis-
fies the constraints (2).

3

1 1 1

1 1

1

1

11 1

1

(b) An optimal triangle-free 2-matching to the
graph in Figure 1a with edge costs indicated
beside the edges. The total cost is 14, so the
example shows the gap is at least 14

12
= 7

6
.

Figure 1: Worst-case example

pattern IV

pattern III

pattern II

pattern I

Figure 2: The 4 path patterns for l mod 4 = 2 with the 4-group highlighted at both ends

We will show that for a subtour-feasible F2M, a triangle-free 2-matching with cost at most
7
6 times the F2M’s cost exists. But before we do so, we have a look at the example graph in
Figure 1 to convince ourselves that this gap cannot be less; in other words, this bound is tight.

2.2 Constructing the triangle-free 2-matching

To show that the gap is at most 7
6 , we consider a subtour-feasible F2M and remind the reader

that an F2M consists of vertex-disjoint odd cycles with x-value 1
2 whose nodes are connected

via paths with x-value 1 along them (the optimal F2M in Figure 1a is an example).
We will show how to replace the cycle edges in the odd cycles and how to modify the paths

to obtain a G2M of the desired cost. A natural extension of an idea in Schalekamp et al. [8]
leads us to consider 4 different path patterns (see Figure 2), each of which may be used to
replace one of the paths in the F2M.

In order to decide which pattern to use, and which cycle edges to remove, we define the
following matching instance. Let G be the support graph of a fractional component. We define
the cubic graph G3 from G by replacing each path of edges with x-value 1 by a single edge.
We now further define a graph G′ by replacing each vertex of G3 by 3 vertices in a row and
each path by a path gadget. Its structure varies slightly according to the path length l mod 4
as the pattern starting with a group of 4 connected nodes is always associated to the central
vertex in the path gadget (an example for l mod 4 = 2, i.e. the patterns in Figure 2, is given
in Figure 3). Note that all these are extensions to the techniques of Schalekamp et al. [8]

The edge costs in G′ are defined as follows. Internal edges have cost 0, cycle edges have the
negative of their original costs and pattern edges have a cost equal to the sum of all edges in
the pattern minus the cost of the original path.

Having defined G′ entirely, we compute a minimum cost perfect matching (PM) on it and
then construct a graph GG2M as follows. We start with the original F2M, but increase the

153

path

path gadget

I

IV

II

III

cycle edge

pattern edge

internal edge

Figure 3: The path in G on the left and the resulting path gadget in G′ on the right

edge value on the odd cycles to 1. We then remove every one of these edges that has its
corresponding cycle edge in G′ in the perfect matching. We replace each path that has one
of its pattern edges in the PM by the corresponding path pattern (we can show that the PM
contains at most 1 pattern edge of each pattern).

We then show that the resulting graph GG2M is a triangle-free G2M, where the triangle-free
property is the only part that does not follow easily from the techniques in Schalekamp et al. [8]
The path patterns are designed to contain groups of 4 nodes, but special care is needed at the
path ends as well as for cycles of size 3 in the F2M. Thanks to the triangle inequality for the
edge costs we can transform GG2M into a triangle-free 2-matching by shortcutting without
increasing the total cost and thus if we show that the cost of GG2M is at most 7

6 the F2M’s
cost we complete the proof.

Finally we bound the cost of the optimal PM from above by defining a fractional edge-
assignment y for G′ that we will show to lie inside the perfect matching polytope as defined
by Edmonds [4]. In particular, we let ye = 1

12 for all pattern edges, ye = 5
12 for cycle edges and

for those internal edges adjacent to a node with degree 4 and finally ye = 1
2 for the remaining

internal edges. This will give the desired bound of 7
6 times the F2M’s cost for the cost of the

triangle-free 2-matching.

References

[1] M. L. Balinski. Integer programming: Methods, uses, computation. Management Science, 12:253–313,
1965.

[2] S. Boyd and R. Carr. A new bound for the ratio between the 2-matching problem and its linear programming
relaxation. Mathematical Programming, 86:499–514, 1999.

[3] N. Christofides. Worst case analysis of a new heuristic for the traveling salesman problem. Report 388,
Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

[4] J. Edmonds. Maximum matching and a polyhedron with (0,1) vertices. J. Res. Nat. Bur. Standards Sect.
B, 69B:125–130, 1965.

[5] M. X. Goemans. Worst-case comparison of valid inequalities for the TSP. Mathematical Programming,
69:335–349, 1995.

[6] D. B. Hartvigsen. Extensions of Matching Theory. PhD thesis, Carnegie Mellon University, 1984.
[7] A. Markovic. Approximation algorithms for the undirected travelling salesman problem. Master’s thesis,

EPFL, 2011.
[8] F. Schalekamp, D. P. Williamson, and A. van Zuylen. A proof of the Boyd-Carr conjecture. In Proceedings

of the 23nd ACM-SIAM Symposium on Discrete Algorithms, pages 1477–1486, 2012.
[9] A. Sebő and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path

version, and 4/3 for two-edge-connected subgraphs. CoRR, abs/1201.1870, 2012.
[10] D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: A monotonicity property with

application. Information Processing Letters, 35:281–285, 1990.
[11] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming

Study, 13:121–134, 1980.

154

Handelman’s hierarchy for the maximum
stable set problem

Monique Laurent1 and Zhao Sun2

1CWI and Tilburg University
2Tilburg University

1 Introduction

1.1 The Handelman hierarchy for polynomial optimization

Given real polynomials p, g1, . . . , gm ∈ R[x] in n variables x = (x1, . . . , xn), we consider the
polynomial optimization problem

pmax = max p(x) s.t. x ∈ K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (1)

i.e., maximizing p over the basic closed semialgebraic set K. This is an NP-hard problem, as
it contains e.g. the maximum stable set problem and the maximum cut problem, which can
both be formulated as instances of (1) with p square-free quadratic and K = [0, 1]n. Let P(K)
denote the set of real polynomials that are nonnegative on K. Then (1) can be rewritten as

pmax = min λ s.t. λ− p ∈ P(K). (2)

A popular approach in the recent years is based on replacing the (hard to test) positivity
condition λ−p ∈ P(K) by a tractable, sufficient condition for positivity. For instance, one may
search for positivity certificates of the form λ−p =

∑
α∈Nm cαg

α1
1 · · · gαm

m , where the multipliers
cα are nonnegative scalars, which leads to the Handelman hierarchy of linear programming
relaxations for (1). When K is a polytope, the asymptotic convergence to pmax is guaranteed
by a result of Handelman [1] showing that any polynomial strictly positive on K belongs to
P(K). Alternatively one may search for positivity certificates of the form

∑
α∈Nm sαg

α1
1 · · · gαm

m

(or simpler s0 +
∑m

j=1 sjgj), where the multipliers sα are now sums of squares of polynomials.
This leads to the Lasserre hierarchy of semidefinite programming relaxations for (1), whose
asymptotic convergence is guaranteed for K compact by results of real algebraic geometry.

Although the Lasserre hierarchy is stronger, it is more difficult to analyze and computation-
ally more expensive as it relies on semidefinite programming. This motivates the study of LP
based hierarchies which are generally easier to analyze, and might yet provide some insightful
information, also for the SDP based hierarchies which they dominate. We refer e.g. to [2] for
a study of LP hierarchies for polynomial optimization over the hypercube. Using Bernstein
approximations, [2] gives error bounds for the Handelman hierarchy, which however apply only
for order t ≥ n. Recently, [4] gives refined error bounds that apply for any order t ≤ n for the
case of square-free quadratic polynomials.

155

We consider here this setting of maximizing a quadratic square-free polynomial p over the
hypercube [0, 1]n (or, equivalently, on the boolean hypercube {0, 1}n). Then the Handelman
hierarchy can be formulated as follows. For an integer t ≥ 1, define the Handelman set

Ht =

∑

T⊆[n],I⊆T,|T |≤t
cI,Tx

I(1− x)T\I : cI,T ≥ 0

setting xI =
∏
i∈I xi and (1− x)T\I =

∏
j∈T\J(1− xj), and the Handelman bound of order t

hant(p) = inf{λ : λ− p ∈ Ht}. (3)

We have that pmax ≤ hant(p), with equality at order t = n, in view of the following identity:
f(x) =

∑
I⊆[n] f(χI)xI(1 − x)[n]\I , which holds for any square-free polynomial f . Using a

combinatorial version of Bernstein approximations, [4] shows the following error bound:

hant(p)

pmax
≤ n

t
for 2 ≤ t ≤ n. (4)

In this note we investigate the Handelman hierarchy applied to the maximum stable set prob-
lem, and answer some open questions posed in [4]. In particular we show a relation to fractional
clique coverings, we give bounds for the rank of the Handelman hierarchy (i.e., the smallest
order needed to obtain the true optimum), and we point out links to two other LP hierarchies
(of Sherali-Adams and Lovász-Schrijver).

1.2 Application to the stable set problem

Let G = (V = [n], E) be a graph with node weights w ∈ RV+ (assumed to be nonnegative
throughout). Then α(G,w) denotes the maximum weight w(S) =

∑
i∈S wi of a stable set S in

G. Following [4] define the polynomial

pG,w =
∑

i∈V
wixi −

∑

i<j:{i,j}∈E
wijxixj , (5)

where we set wij = max{wi, wj} for i, j ∈ V . It is not difficult to verify that α(G,w) can be
computed via the following optimization problem over the hypercube:

α(G,w) = max
x∈[0,1]n

pG,w(x).

We can use the Handelman hierarchy (3) to bound the stability number and, as pG,w is square-
free, the error bound (4) applies. In addition, let rkH(G,w) denote the smallest integer t for
which hant(pG,w) = α(G,w), called the Handelman rank of (G,w). In the unweighted case
(i.e., wi = 1 ∀i), we simply omit the subscript w and write pG, han(pG), α(G) and rkH(G). It is
shown in [4] that hant(pG,w) ≥ (

∑
i∈[n]wi)/t, which implies rkH(G,w) ≥ (

∑
i∈[n]wi)/α(G,w).

For instance, the Handelman rank of the complete graph is largest possible: rkH(Kn) = n.

2 Main results

2.1 Upper bound for the Handelman rank

We begin with a upper bound for the Handelman rank of general graphs, sharper bounds are
given for specific graph classes thereafter. This bound is tight e.g. for the complete graph Kn.

156

Theorem 1. For any weighted graph (G,w), rkH(G,w) ≤ |V (G)| − α(G) + 1.

Here is a sketch of proof. The starting point is the following identity, which holds for any
square-free polynomial: f(x) = (1 − xn)f(x, 0) + xnf(x, 1), where we set x = (x1, . . . , xn−1).
Now observe that setting xn = 0 in the polynomial fG,w = α(G,w) − pG,w corresponds to
deleting node n, giving the graph G \ n, while setting xn = 1 corresponds to deleting n and
its neighbors, giving the graph G 	 n (roughly). More precisely, fG,w(x, 0) = fG\n,w(x) +
α(G,w)− α(G \ n,w), while fG,w(x, 1) = fG	n,w(x) + q, where q ∈ H2. This implies:

rkH(G,w) ≤ 1 + max{rkH(G \ n), rkH(G	 n), 2}. (6)

The result of Theorem 1 follows using induction on |V (G)|.

2.2 Link to fractional clique covers

Let (G,w) be a weighted graph. Given an integer t, a fractional t-clique cover of (G,w)
is a collection of cliques C in G of size at most t together with scalars λC ≥ 0 satisfying∑

C λCχ
C = w. Then the fractional t-clique cover number of (G,w) is the parameter

ρt(G,w) = min{
∑

C

λC :
∑

C

λCχ
C = w, λC ≥ 0 ∀C clique of G with |C| ≤ t}. (7)

Theorem 2. ρt(G,w) ≥ hant(pG,w), with equality in the case t = 2.

Theorem 3. Given a graph G, rkH(G,w) ≤ 2 for all w ∈ Rn+ if and only if G is bipartite.

This answers an open question of [4]. Note that there exist nonbipartite graphs with Handel-
man rank 2: Let G be obtained by taking the clique sum of t copies of Kt+1 along a common Kt.
Then, α(G) = t = ρ2(G) (since one can cover all the nodes by t edges), and thus rkH(G) = 2.

2.3 Results for some graph classes

Perfect graphs. When G is a perfect graph, it is known that α(G,w) = ρt(G,w) for t ≥ ω(G),
where ω(G) is the clique number of G. Therefore, the Handelman relaxation of order ω(G) is
exact: α(G,w) = hanω(G)(PG,w) and thus rkH(G,w) ≤ ω(G) for any w ∈ Rn+. Moreover, if G
is vertex-transitive, then rkH(G) ≥ n/α(G) = ω(G). Summarizing:

Theorem 4. If G is perfect then rkH(G,w) ≤ ω(G), with equality in the unweighted case if G
is vertex-transitive.

Odd cycles and their complements. Let G = C2n+1 be an odd cycle. As deleting a
node creates a bipartite graph, we deduce using relation (6) combined with Theorem 3 that
rkH(C2n+1, w) ≤ 3 (answering an open question of [4]). This implies that odd wheels have
Handelman rank at most 4. Analogously, deleting a node in the complement of C2n+1 creates
a perfect graph with clique number n, which implies rkH(C2n+1) ≤ n+ 1 (using again (6)). In
the unweighted case, we have rkH(C2n+1) = 3 and rkH(C2n+1) = n + 1. As an application, a
graph G is perfect if and only if rkH(G′) ≤ ω(G′) for every induced subgraph G′ of G.

t-perfect graphs. A graph G is said to be t-perfect if its stable set polytope is completely
described by the nonnegativity conditions xi ≥ 0 (i ∈ V (G)), the edge inequalities xi + xj ≤ 1
(ij ∈ E), and the odd circuit inequalities

∑
i∈V (C) xi ≤ (|C| − 1)/2 for all odd circuits C of G.

Based on the fact that edges and odd cycles have Handelman at most 3 we can show that
the Handelman rank of weighted t-perfect graphs is at most 3. Note however that this bound
applies when defining the edge weights wij by wij = wiwj (in (5)) and assuming wi ≥ 1 ∀i.

157

3 Graph operations and links to other hierarchies

It is interesting to understand the behaviour of the Handelman rank under graph operations
like node or edge deletion and clique sums. A first observation is that the rank is not monotone
under node or edge deletion. For instance, the Handelman rank of K4\e is 2 (since α(K4\e) =
ρ2(K4 \ e)), while the rank is 3 if we delete a node of degree 2 or an edge adjacent to it.

When deleting node u in G one can show the following: rkH(G \ u) ≤ rkH(G) if α(G) =
α(G\u), rkH(G \ u) ≥ rkH(G) if α(G) = α(G\u) + 1, with equality if u is an isolated node.

We do not formulate the exact results regarding clique sums which require case analysis.
Based on this one can show that graphs with tree-width at most 2 have Handelman rank at
most 3. (Alternatively, this follows from the fact that such graphs are t-perfect and the above
bound 3 on their Handelman rank). An interesting open question is whether more generally it
is true that the Handelman rank is at most the tree-width of the graph plus 1. We observe that
this bound holds true for other hierarchies like the Sherali-Adams (SA) LP hierarchy and the
Lasserre SDP hierarchy which both dominate the Handelman hierarchy. On the other hand,
it is not known whether this holds for the Lovász-Schrijver (LS) hierarchy which seems most
closely related to the Handelman hierarchy.

The LS procedure builds a hierarchy of polyhedra for the stable set polytope starting from
the fractional stable set polytope (defined by nonnegativity and edge inequalities). Among
others [3] shows that its rank is at most |V (G)| − α(G) − 1, that the first relaxation is exact
precisely for t-perfect graphs, and that the rank is equal to ω(G)− 2 for perfect graphs. This
suggests a shift of 2 between the Handelman and LS ranks, justified by the fact that edges are
already taken into account at level 0 of the LS construction. The gap between the two ranks
can be arbitrarily large: the clique t-sum of t copies of Kt+1 has Handelman rank 2 and LS
rank t.

References

[1] D. Handelman. Representing polynomials by positive linear functions on compact convex polyhe-
dra. Pacific Journal of Mathematics, 132:35–62, 1988.

[2] E. de Klerk and M. Laurent. Error bounds for some semidefinite programming approaches to
polynomial optimization on the hyeprcube. SIAM J. Opt., 20(6):3104–3120, 2010.

[3] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0− 1 optimization. SIAM J.
Disc. Mathematics, 1(2): 166-190, 1991.

[4] M.-J. Park and S.-P. Hong. Handelman rank of zero-diagonal quadratic programs over a hypercube
and its applications. J. Global Optimization. Published online: 17 April 2012.

158

A New Upper Bound for the Traveling
Salesman Problem in Cubic Graphs

Maciej Lískiewicz1 and Martin R. Schuster1

1Institute of Theoretical Computer Science, University of Lübeck, Germany

1 Introduction

It is an outstanding open problem whether the traveling salesman problem (TSP) and the closely
related Hamiltonian cycle problem can be solved in O(cn) time for graphs on n vertices, for some
constant c < 2. Recently Björklund et al. [3] have shown that the classical Bellman-Held-Karp
exact algorithms [2, 9] for solving TSP can be modified to run in time O((2 − ε)n), where
ε > 0 depends only on the maximum vertex degree. This provides the first upper bound on the
time complexity of TSP that lies below 2n for a broad class of graphs such as bounded degree
graphs. Particularly, applying the result of [3] for graphs with maximum vertex degree three,
also called cubic graphs, one gets that TSP can be solved in time 23n/4nO(1) = O(1.682n). On
the other hand, the problem of testing whether a cubic graph has a Hamiltonian cycle and
consequently the decision version of TSP remain NP-complete even if the graphs are restricted
to be planar [7].

Exact algorithms for TSP for special classes of bounded degree graphs, in particular for cubic
graphs, have been the subject of separate studies. The motivation for the study comes both
from theoretical concerns and from practical applications, e. g. in computer graphics [1, 6]. The
first exact algorithm for TSP in cubic graphs running faster than in time 2n was proposed
by Eppstein [5]. His algorithm solves the problem in 2n/3nO(1) = O(1.260n) time and linear
space and additionally it is easy to implement. Thus, although the technique by Björklund
et al. improves the upper bound 2n for any degree bounded ≥ 3, for specific bounds, like e. g. 3,
better methods exist.

Eppstein’s algorithm is a sophisticated recursive branch-and-bound search, which takes
advantage of small vertex degrees in a graph. In [10] Iwama and Nakashima slightly modify
Eppstein’s algorithm and provide a new interesting method to bound the number of worst-case
branches in any path of the branching tree corresponding to recursive subdivisions of the
problem. As a consequence, Iwama and Nakashima claim O(1.251n) to be an upper bound for
the run-time of the algorithm. Unfortunately, their paper contains several serious mistakes that
render the proof for the upper bound invalid (for details, see [11]). After reformulating the key
lemma of [10] to be correct and then using the lemma to solve the recurrences derived in [10] in
a proper way one could prove the upper bound O(1.257n) that still beats the bound O(1.260n)
by Eppstein.

In this article we provide a new upper bound for TSP in cubic graphs. We show that
Eppstein’s algorithm with some minor modifications (see [11]), similar to those used in [10],
yields the stated result:

159

Theorem 1.1. The traveling salesman problem for an n-vertex cubic graph can be solved in
O(1.2553n) time and in linear space.

Our proof techniques are based on ideas used by Eppstein [5] and Iwama and Nakashima
[10] and a new, more careful study of worst-case branches in the tree of recursive subdivisions
of the problem performed by the algorithm. Thus, our main contribution is more analytical
than algorithmic. Nevertheless, we have implemented our algorithm and verified its easy
implementability and good performance for graphs up to 114 vertices (for the experimental
results see [12]).
Related work. Applying the result by Björklund et al. for an n-vertex graph with maximum
degree four one gets that TSP can be solved in O(1.856n) time and exponential space. Epp-
stein [5] showed that the problem can be solved in O(1.890n) time but using only polynomial
space. Next, Gebauer [8] proposed an algorithm that runs in time O(1.733n). This algorithm
can also list the Hamiltonian cycles but it uses exponential space. Very recently, Cygan et al.
[4] have shown a Monte Carlo algorithm with constant one-sided error probability that solves
the Hamiltonian cycle problem in O(1.201n) time for cubic graphs and in O(1.588n) time for
graphs of maximum degree four. Though the technique presented in [4] works well for the
Hamiltonian cycle problem, its modification to solve TSP seems to be highly nontrivial.

2 The Improved Analysis of Eppstein’s Algorithm

Eppstein’s TSP algorithm [5] searches recursively for a minimum weight Hamiltonian cycle
Hmin in a given cubic graph G. The algorithm constructs successively Hamiltonian cycles which
are determined by a set of forced edges F . The goal is to find the set F which coincides with
Hmin. In each recursion step, an edge e ∈ G \ F is chosen. Obviously, e either belongs to
Hmin or not. Thus, the algorithm makes two recursive calls: once e is added to F , assuming
e ∈ Hmin, and once e is removed from G, assuming e 6∈ Hmin. The better solution to these two
subproblems will then be returned. Splitting the problem into two subproblems determined by
e will be called a branch (for an example see Fig. 1).

To analyse the time complexity of the algorithm, Eppstein derives a recurrence T (s) =
max{2T (s− 3), T (s− 2) + T (s− 5)}, with a parameter s bounded by the number of vertices n.
The solution T (n) = O(2n/3) of the recurrence provides a bound on the number of iterations of
the algorithm.
Main Ideas of our Analysis. Our new analysis of Eppstein’s algorithm largely relies on
exploiting ideas due to Iwama and Nakashima [10] and on a new, more careful analysis of the
branching tree. The worst-case component 2T (s− 3) in the recurrence relation corresponds to
the situations when the algorithm reduces the problem of size s to two subproblems each of size
s− 3. Eppstein proves that there are two cases leading to such situations. In their paper Iwama
and Nakashima call the branches of the algorithm corresponding to these cases respectively A-
and B-branches. Branches which are neither of type A nor B are called D-branches. Results of
performing these branches are shown in Fig. 1.

Since A- and B-branches have the biggest impact on worst-case performance, the idea is to
find an upper bound on the number of such branches. Iwama and Nakashima observed that
the total number of A-branches along any path of the backtrack tree cannot exceed n/4 for any
n-vertex input graph. Thus, an important challenge now is to bound the worst-case number
of occurrences of B-branches and then to incorporate these information by introducing new
variables into a recurrence equation.

160

x x
yw
z

yw
z

(a) A-branch

z

y

z

y

(b) B-branch

Figure 1: Branching on an edge e = (y, z); bold black line: edge in F ; bold gray line: edge
selected by the current branch; dotted line: edge removed by the branch.

In our approach we will count, similarly as in [10], A-branches and B-branches together. We
prove that if P is a single path of the backtrack tree and a, resp. b, denotes the number of A-,
resp. B-branches, then 3a+ 7b ≤ n holds for any n-vertex input graph. This bound plays a
crucial role in our analysis.
The Recurrence. For our analysis of the run-time of the algorithm, we define a multivariate
recurrence equation in the variables n, s, x, y, and f . Variable n denotes the number of vertices
of the input graph and will not be modified by the recurrence. Variable s is defined in a
similar way as in [5]; we let s = |V (G)| − |F | − 2|C|, where C is a set of 4-cycles of G that form
connected components of G \ F . Next, let x = n/4 − a and y = n/7 − b, where a, resp.
b, is the number of A-branches, resp. B-branches, made by the algorithm along the current
backtrack path. Finally, f is the number of free vertices in G, meaning they are not adjacent
to an edge in F . We can bound the worst-case number of leaves of the backtrack tree as the
solution of the following recurrence defined for non-negative integers n, s, x, y, f as follows:

T (n, s, x, y, f) = max

2T (n, s− 3, x− 1, y, f − 4)

2T (n, s− 3, x, y − 1, f)

T (n, s− 5, x, y, f − 2) + T (n, s− 2, x, y, f − 2)

2T (n, s− 4, x, y, f)

T (n, s− 4, x, y, f − 2) + T (n, s− 3, x, y, f − 2).

(1)

The correctness follows from our main technical result bounding the number of A- and
B-branches along any path of the backtrack tree:

Proposition 2.1. Let P be a single path of the backtrack tree and suppose that there are b
B-branches on P . Then along P the algorithm selects at least 4b edges which are neither selected
by A- nor by B-branches.

Since any A- and any B-branch selects three edges, the inequality 3a+ 3b+ 4b ≤ n follows.

Corollary 2.2. The invariant of the algorithm running on an input graph with n vertices is
that 3a+ 7b ≤ n or equivalently that 3x+ 7y ≥ 3

4n.

Corollary 2.3. The worst-case number of leaves of the backtrack tree on an n-vertex graph is
bounded by T (n, n, n/4, n/7, n).

To bound the solution for the recurrence (1) we use a function of the form R(n, s, x, y, f) =

2αs+β(x+
7
3
y− 1

4
n)+γf . Note that the term x+ 7

3y − 1
4n incorporates the information provided by

Proposition 2.1 and Corollary 2.2. Our aim is to find parameters α, β, and γ with the property
that for all n, s, x, y, f it holds: T (n, s, x, y, f) ≤ R(n, s, x, y, f), and that the following upper

bound is best possible: T (n, n, n/4, n/7, n) ≤ 2αn+β(
n
4
+ 7

3
n
7
− 1

4
n)+γn = 2(α+

β
3
+γ)n. Thus, we have

to minimize α+ β/3 + γ. The minimization gives a rational approximation

α+ β
3 + γ = 1219

3717 and T (n, n, n/4, n/7, n) ≤ 2(α+
β
3
+γ)n = 2

1219
3717

n ≈ 1.25523n.

This completes the proof of Theorem 1.1.

161

3 Conclusions

In this paper we have provided a new upper bound O(1.2553n) for TSP in cubic graphs which
consequently also applies for the Hamiltonian cycle problem. An interesting open problem is to
further improve this bound. One could try e. g. to find a new algorithm and prove a better
asymptotic time complexity than O(1.2553n). On the other hand, we believe that the worst-case
time complexity of Eppstein’s algorithm is much smaller than the current upper bound.

Our experimental analysis (Fig. 2, for details see [12]) has confirmed that Eppstein’s algorithm
with our modification is easily to implement and that the algorithm has good performance.
The experimental results show a gap between our upper bound on the tree size and actual sizes
for graphs up to 112 vertices. This could indicate that the worst-case complexity of Eppstein’s
algorithm is much smaller than O(1.2553n).

n

#Branches

20 40 60 80 100

210

220

R(n, n, n/4, n/7, n) = 1.2553n

f(n) = 1.15n
T (n, n, n/4, n/7, n)

rand. avg.
rand. max.

cages

HamCycles

Figure 2: Total number of branches (in logarithmic scale) in backtrack trees for n-vertex random
graphs, cages, and graphs of 2n/3 Hamiltonian cycles.

References

[1] Esther M. Arkin, Martin Held, Joseph S. B. Mitchell, and Steven S. Skiena. Hamiltonian triangula-
tions for fast rendering. The Visual Computer, 12(9):429–444, 1996.

[2] Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J. ACM,
9(1):61–63, 1962.

[3] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling salesman
problem in bounded degree graphs. ACM Trans. on Algorithms, 8(2):18, 2012.

[4] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. In FOCS, pages 150–159, 2011.

[5] David Eppstein. The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl.,
11(1):61–81, 2007.

[6] David Eppstein and M. Gopi. Single-strip triangulation of manifolds with arbitrary topology.
Eurographics Forum, 23(3):371–379, 2004.

[7] Michael. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar hamiltonian circuit
problem is np-complete. SIAM J. Comput., 5(4):704–714, 1976.

[8] Heidi Gebauer. Enumerating all hamilton cycles and bounding the number of hamilton cycles in
3-regular graphs. Electr. J. Comb., 18(1), 2011.

[9] Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems. J.
Soc. Ind. Appl. Math., 10:196–210, 1962.

[10] Kazuo Iwama and Takuya Nakashima. An improved exact algorithm for cubic graph tsp. In
COCOON, pages 108–117, 2007.

[11] Maciej Lískiewicz and Martin R. Schuster. A new upper bound for the traveling salesman problem
in cubic graphs. CoRR, abs/1207.4694v2, 2012.

[12] Martin R. Schuster. Exact Algorithms for Traveling Salesman Problem in Cubic Graphs. Master
Thesis, Universität zu Lübeck, 2012.

162

Manufacturing process flexibility with
Robust Optimization using AIMMS

Ovidiu Listes1

1Paragon Decision Technology, Ovidiu.Listes@aimms.com

We address the design problem of manufacturing process flexibility and capacity expansion
under uncertain demands using Robust Optimization. The model involves binary product-to-
plant assignments and binary decisions for expanding capacity. Affine decision rules are used
for capacity expansion and for the amounts of processed products. We illustrate how AIMMS
is able to easily accommodate the formulation of the model under uncertainty and generate the
robust counterpart automatically. We also show how the intuitive, effective modeling concepts
in AIMMS allow for fast, flexible experiments and comparison of results based on various
uncertainty sets.

163

Optimal Paths in Networks with Rated
Transition Time Costs

Dmitrii Lozovanu1 and Stefan Pickl2

1Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Academy str. 5,
Chisinau, MD–2028, Moldova, e-mail: lozovanu@math.md

2Institute for Theoretical Computer Science, Mathematics and , Operations Research, Universität der
Bundeswehr, München, 85577 Neubiberg-München, Germany, e-mail: stefan.pickl@unibw.de

Let G = (X,E) be a directed graph with a vertex set X, |X| = n, and an
edge set E where to each directed edge e ∈ E a cost ce is associated. For an
arbitrary directed path P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xk = y} with a
given starting vertex x and a final vertex y we define the total rated cost C(x, y) =∑k−1

t=0 λ
tcet , where λ > 0 is a given positive value which we call the rate. We

describe polynomial time algorithms for determining the paths with minimal total
rated costs in networks with a fixed number of edges and with a free number of
edges of the optimal path.
Keywords: Networks, Optimal paths, Time transition cost, Total rated cost,
Polynomial time algorithm.
MSC: 90B10, 90B20.

1 Introduction and Problem Formulation

In this paper we consider an optimal paths problem on networks which generalizes the well-
known minimum cost path problem in a weighted directed graph. The formulation of this
problem is the following.

Let G = (X,E) be a finite directed graph with a vertex set X, |X| = n and an edge set E
where to each directed edge e = (u, v) ∈ E a cost ce is associated. Assume that for two given
vertices x, y there exists a directed path P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xk = y} from
x to y. For this directed path we define the total rated cost

C(x0, xk) =

k−1∑

t=0

λtcet ,

where λ is a positive value. So, in this path the costs cet of the directed edges et are rated
by λtCte. We consider the problem of determining a path from x to y with a minimal total
rated cost for the case with a fixed number of edges and for the case with a free number of
edges. If λ = 1 then the formulated problem becomes the well known problem of determining
the shortest path from x to y. In general, the considered problem can be regarded as the
problem of determining the optimal paths in a dynamic network determined by the graph

165

G = (X,E) with the cost function ce(t) = λtce on the edges e ∈ E that depend on time.
Therefore if the number k of the edges for the optimal path is given then we can apply the
dynamic programming algorithm or the time-expanded network method which determines the
solution of the problem using O(|x|3k) elementary operations.

Here we show that for the considered problem the linear programming approach can be
applied and new algorithms for determining the optimal paths can be gained.

2 The Main Results

At first we show how a linear programming approach for the problem without a restriction on
the number of edges of the optimal path can be applied.

Assume that the costs ce, e ∈ E are nonnegative and consider the following linear program-
ming problem:
Minimize

φ(α) =
∑

e∈E
ceαe (1)

subject to

∑
e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x,

∑
e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y},

αe ≥ 0, ∀e ∈ E,

(2)

where E−(u) is the set of directed edges that originates in the vertex u ∈ X and E+(u) is the
set of directed edges that enters in u.

We have proved the following results:

Theorem 1. If λ ≥ 1 and in G there exists at least a directed path P (x, y) from a given
starting vertex x to a given final vertex y then for nonnegative costs ce of the edges e ∈ E the
linear programming problem (1),(2) has solutions. If α∗e for e ∈ E represents an optimal basic
solution of this problem then the set of directed edges E∗ = {e ∈ E|α∗e > 0} determines an
optimal directed path from x to y.

Theorem 2. If G = (X,Y) has a structure of an acyclic directed graph with a sink vertex y
then for an arbitrary λ ≥ 0 and arbitrary costs ce, e ∈ E there exists the solution of the linear
programming (1),(2). Moreover, if α∗e for e ∈ E represents an optimal basic solution of this
problem then the set of directed edges E∗ = {e ∈ E | α∗e > 0} determines an optimal directed
path from x to y.

Note that for some special cases the linear programming (1),(2) determines the optimal path
from x to y with 0 < λ < 1 when graph G = (X,E)) contains directed cycles. However, there
may be cases where the linear programming problem (1),(2) with 0 < λ < 1 may not find the
optimal path from x to y even for positive costs ce, ∀e ∈ E if G = (X,E)) contains directed
cycles. The problem with 0 < λ < 1 can be treated as the optimal control problem on networks
with discounted costs and in the general case it can be studied using the linear programming

166

models from [2, 4] related to a stochastic control problem and discounted Markov decision
processes with absorbing states.

In order to elaborate efficient algorithms for solving the problem in the cases mentioned
above we have used the following dual model for the linear programming problem (1),(2):
Maximize

ψ(β) = βx (3)

subject to

βu − λβv ≤ cu,v,∀(u, v) ∈ E0, (4)

where E0 = {e = (u, v) | u ∈ X \ {y}, v ∈ X}.
An optimal basic solution of the dual problem (3),(4) (if it exists) can be obtained using a

special recursive procedure for the calculation β∗u, u ∈ X starting with β∗v = 0 for v = y and
βu =∞ for u ∈ X \ {y}. The optimal vales β∗u for u ∈ X \ {y} can be determined on the basis
of the following recursive formula

βu = min
u∈X(u)

{
λβv + cu,v

}
.

After |X| iterations of this procedure we determine an optimal basic solution of the problem.
An arbitrary directed edge (u, v) for which β∗u = λβ∗v + cu,v holds represents a directed edge
of an optimal path from x to y. So, the algorithm based on this recursive procedure allows us
to solve the considered problems in the general case with the same complexity as the problem
with λ = 1.

If in G it is necessary to determine the optimal paths from every x ∈ X \ {y} to y then
the tree of these optimal paths can be found using the following linear programming problem:
Minimize the objective function (1) subject to

∑
e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, ∀u ∈ X \ {y},

αe ≥ 0, ∀e ∈ E.
(5)

The dual model for this linear programming problem is the following:
Maximize

ψ(β) =
∑

u∈X\{y}
βu (6)

subject to (6). An optimal basic solution of the dual problem (5),(6) can be found in a similar
way as for the previous dual problem.

Now let us consider the problem when the number of the edges in the optimal path is given
and it is equal to k. We have shown that for this problem the following linear programming
problem can be used:

167

Minimize

φ(α) =
∑

e∈E
ceαe (7)

subject to

∑
e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x,

∑
e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y},
∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = −λk−1, u = y,

αe ≥ 0, ∀e ∈ E.

(8)

The problem (7),(8) has solutions for arbitrary costs ce, e ∈ E if in G there exists a directed
path that contains k edges. However the optimal solution of this problem may correspond
to a directed path that contains directed cycles. Therefore in this case for determining the
optimal solution it is a more useful to use a dynamic programming algorithm and a time-
expanded network method from [1, 3] considering this problem on a dynamic network with
costs ce(t) = λtce on the edges that depend on time.

3 Conclusion

The considered optimal paths problems in networks with rated transition time costs on the
edges generalizes the shortest path problem in a weighted directed graph. For this problem
new polynomial time algorithms based on dynamic programming have been elaborated and
grounded. The proposed approach can be extended for minimum cost flow problems on net-
works with rated transition time costs on the edges.

References

[1] Lozovanu D., Pickl S. Optimization and Multiobjective Control of Time-Discrete Systems.
Springer, (2009).

[2] Lozovanu D, Pickl S. Determining Optimal Stationary Strategies for Discounted Stochastic
Optimal Control Problems on Networks, Extended abstracts of 9th CTW workshop on
Graphs and Combinatorial Optimization, Cologne, Germany (2010), 115–118.

[3] Lozovanu D, Fonoberova M. Optimal Dynamic Flows in Networks and Algorithms for
Finding Them, Chapter in the book ”Analysis of Complex Networks”, (ed. by Dehmer M.
and Emmert-Streib F.), Wiley (2009), 377–401.

[4] Puterman, M., Markov Decision Processes: Stochastic Dynamic Programming., John
Wiley, New Jersey (2005).

168

Linearization of ancestral
multichromosomal genomes

Ján Maňuch1,2, Murray Patterson3, Roland Wittler4, Cedric Chauve1,
and Eric Tannier5,6

1Department of Mathematics, Simon Fraser University, Burnaby BC, Canada
2Department of Computer Science, University of British Columbia, Vancouver BC, Canada

3Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
4Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany

5INRIA Rhône-Alpes, 655 avenue de l’Europe, F-38344 Montbonnot, France
6Lab. de Biométrie et Biologie Évolutive, CNRS and U. de Lyon 1, F-69622 Villeurbanne, France

1 Introduction

Genomes, meant as the linear organization of genes along chromosomes, have been successively
modeled by several mathematical objects. Sturtevant and Tan [1] first introduced permuta-
tions to study the evolution of genome structure. Starting in the 1980’s [2], a large body of
work focused on the mathematical and algorithmic properties of such models, including linear
and circular genomes [3]. In this framework, hardness results of algorithmic complexity were
ubiquitous as soon as three genomes were compared [4].

In order to scale to the dozens of available genomes, another model was needed. Bergeron,
Mixtacki and Stoye [5] proposed to use a graph matching between gene extremities to define a
genome. Eukaryotes with organelles, or prokaryotes with several replicons, which have not yet
been handled explicitly by a formal comparative genomics approach, arguably fit such a model.
An unexpected consequence of this relaxation is that the comparison of three genomes with
the breakpoint distance proved to be tractable, as an exact optimal median can be computed
by solving a maximum weight perfect matching problem [6]. Moreover, the small parsimony
problem can be solved for any number of genomes for the Single-Cut and Join (SCJ) distance
by Fitch’s parsimony algorithm on binary characters [7]. This opened the way to scalable
methods at the level of large multispecies datasets.

An additional relaxation allows any graph, and not only a matching, to model genomes.
Ancestral genome reconstruction methods often first compute sets of ancestral adjacencies
(neighborhood relations between two genes) [8], or intervals (neighborhood relations between
an arbitrary number of genes) [9], which result in non-linear structures. This, while unrealistic
at a first glance, allows computational breakthroughs, like incorporating duplications and
heterogeneous gene content in the framework [10, 11] with polynomial exact methods, and
non-linear genomes may help to understand the amount of error in the data [11].

Nevertheless, biological applications in general require linear genomes. The Linearization
Problem is, given a set of weighted intervals (the weight indicates a confidence value based on
phylogenetic conservation of intervals), to find a maximum weight subset which is compatible
with a linear structure.

169

According to the definition of a linear structure, this can be described by some form of
problem on an edge-weighted hypergraph H = (V,E), where each vertex v ∈ V is a gene
or gene extremity, and each (weighted) hyperedge e ∈ E is an interval. If the target linear
structure is a genome with several linear chromosomes, then in the case of adjacencies (intervals
of size 2), H is just a graph and hence the Linearization Problem is equivalent to the Maximum
Weight Vertex-Disjoint Path Cover Problem, so it is NP-complete [12]. For a genome with a
single circular chromosome, the Linearization Problem in the case of adjacencies generalizes
the Traveling Salesman Problem (TSP), so it is also NP-complete [12].

To the best of our knowledge, there is currently no tractability result known for the Lineariza-
tion Problem. Currently all methods [8, 10] rely on heuristic or external Traveling Salesman
Problem solvers, or branch and bound techniques [9, 13]. Moreover, none of the previously
published methods is able to infer multichromosomal genomes, possibly with circular chromo-
somes, which is the natural model for bacterial genomes with plasmids.

In the present paper, we prove that the Linearization Problem for weighted adjacencies,
when ancestral genomes can have several circular and linear chromosomes, is tractable. Note
that this variant of the problem is a relaxation of the previous problems, so NP-hardness does
not follow from them. We prove this in a more general case, where multiple copies m(v) of each
vertex (gene) v is allowed. Here, instead of a collection of cycles and paths on the vertices, one
asks for a collection of cyclic walks on the vertices, where there are at most m(v) occurrences
of any vertex v in all such walks. In the context of genome reconstruction, this allows to model
genes with multiple copies in an ancestral genome [14], or to include telomere markers [15].

We show that this corresponds to finding a maximum weight f -matching, which, in turn,
is reducible to finding a maximum weight matching. Also, following the complexity pattern
already observed with the model of [14], we further show that the Linearization Problem for
intervals of size 2 and 3 is NP-complete, even if all intervals have the same weight and all
vertices have multiplicity one. We discuss the possibilities that our tractability result opens
for ancestral genome reconstruction.

2 Results

In the case of weighted adjacencies, let G be the corresponding (edge-weighted) graph. Let
m : V (G)→ N specify the maximum copy number (or multiplicity limit) for each vertex of G.
We say that G is m-linearizeable if there exists a collection of cyclic walks that satisfies the
following two conditions: (i) G is a subgraph of the union of cyclic walks; and (ii) the total
number of occurrences of each vertex v in all cyclic walks is at most m(v).

A 2m-matching of a graph G is a spanning subgraph of G such that the degree of each
vertex v ∈ V (G) is at most 2m(v). The following lemma shows the correspondence between
spanning subgraphs of G that are m-linearizeable and 2m-matchings of G.

Lemma 2.1. A spanning subgraph of a graph G is m-linearizeable if and only if it is a 2m-
matching of G.

We give a proof sketch. For more details, we refer the reader to a similar proof in [14].

Proof. First, assume a spanning subgraph G′ of G is m-linearizeable. Then there is a collection
of cyclic walks satisfying conditions (i) and (ii). Since each vertex v appears at most m(v)
times in these cyclic walks and each occurrence has only two neighbors, the degree of v in G′

is at most 2m(v). Hence, G′ is a 2m-matching of G.

170

Figure 1: Reduction used to transform the maximum weight f -matching problem to the maximum weight
matching problem. Edge weights are all one, unless otherwise indicated, and f is given by the
white dots inside the nodes. The total edge weight in G is 8. The solid edges show a maximum
weight f -matching in G (w = 6), and a corresponding maximum weight matching in G′ (of weight
6 + 8 = 14).

Conversely, assume G′ is a 2m-matching of G. If degG′(v) < 2m(v) for some v ∈ V (G′),
then we add a new vertex v0 and for each v such that degG′(v) < 2m(v), we add a new edge
{v0, v} with multiplicity 2m(v)−degG′(v) to G′. Since now every vertex of G′ has even degree,
each component C of G′ is Eulerian, i.e., there is a cyclic walk which contains all edges of C,
and each v ∈ V (C) appears exactly m(v) times in the walk. If C does not contain v0 then
this cyclic walk satisfies conditions (i) and (ii) for vertices in V (C). If C contains v0, then
after omitting all occurrences of v0 we obtain a cyclic walk satisfying conditions (i) and (ii) for
vertices in V (C). Hence, G′ is m-linearizeable.

It follows that maximum weight m-linearizeable subgraphs of G correspond to maximum
weight 2m-matchings of G. Next, we give an algorithm for finding a maximum weight f -
matching of G with running time (O((|V (G)| + |E(G)|)3/2)), where f : V (G) → N. We will
use a more general form of Tutte’s reduction for reducing the maximum weight f -matching
problem to the maximum weight matching problem similar to the ones presented in [16, 17].

Given edge weighted graph G and function f , construct G′ as follows: For all x in V (G), let
x1, x2, . . . , xf(x) be in V (G′); and for all e = {x, y} in E(G), let ex and ey be in V (G′). Now,
for all e = {x, y} in E(G), let {x1, ex}, . . . , {xf(x), ex}, {ex, ey}, {y1, ey}, . . . , {yf(y), ey} be
edges of G′, and all these edges have weight w(e). This reduction is illustrated in Figure 1.

Property 2.2. There is an f -matching in G with weight w if and only if there is a matching
in G′ with weight w +W , where W =

∑
e∈E(G)w(e).

An unweighted version of this property was shown in [17]. The weighted version can be
shown in the same way, and hence, we omit the proof.

Since a maximum weight matching can be found in time O(
√
|V (G′)| · |E(G′)|) [18], we have

time O((|V (G)| + |E(G)|)3/2) algorithms for finding a maximum weight f -matching and for
finding a maximum weight m-linearizeable subgraph, in the case of adjacencies.

Finally, we show that if we generalize to intervals of size 2 and 3, this version of the Lin-
earization Problem is NP-complete, even when all multiplicities and weights are equal to one.
We do this by defining what it means for a hypergraph H = (V,E) to be m-linearizable, and
then it suffices to prove the following theorem for unweighted hypergraphs.

Theorem 2.3. Finding a 1-linearizable subgraph of hypergraph H with the maximum number

171

of edges is NP-complete.1

3 Conclusions

There are exact optimization [8, 10, 11] or empirical [9] fast methods to construct ancestral
adjacencies which do not necessarily form a linear signal. But to date, all linearization methods
were heuristics or calls to TSP solvers [8, 10]. Moreover, no method is currently adapted to
reconstruct bacterial ancestral genomes with plasmid(s), which is common in the living world.

It is not the first time that a slight change in the formulation of a problem dramatically
changes its computational status [13]. Even if such a relaxation is less realistic in certain
contexts, solving the relaxation can also help to approach efficiently the constrained problem,
like for Double-Cut and Join (DCJ) and inversions/translocations, for example [19]. More
generally, 2-factors (spanning subgraphs composed of collections of vertex-disjoint cycles) have
been used to approximate Traveling Salesman solutions [16], so genomes composed of several
circular chromosomes can be a way to approximate solutions for linear genomes.

References

[1] A.H. Sturtevant and C.C. Tan. The comparative genetics of drosophila pseudoobscura
and drosophila melanogaster. Journal of Genetics, 34:415–432, 1937.

[2] G. A. Watterson, et al. The chromosome inversion problem. Journal of Theoretical
Biology, 99:1–7, 1982.

[3] G. Fertin, et al. Combinatorics of genome rearrangements. MIT press, 2009.

[4] D. Bryant. The complexity of the breakpoint median problem. Technical Report CRM-
2579, Centre de Recherches Mathématiques, Université de Montréal, 1998.

[5] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In Algorithms in Bioinformatics, Proceedings of WABI’06, volume 4175 of LNBI, pages
163–173, 2006.

[6] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal median and halving problems
under different genomic distances. BMC Bioinformatics, 10:120, 2009.

[7] P. Feijao and J. Meidanis. SCJ: a breakpoint-like distance that simplifies several rearrange-
ment problems. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
8:1318–1329, 2011.

[8] J. Ma, et al. Reconstructing contiguous regions of an ancestral genome. Gen. Res.,
16:1557–1565, 2006.

[9] C. Chauve and E. Tannier. A methodological framework for the reconstruction of con-
tiguous regions of ancestral genomes and its application to mammalian genomes. PLoS
Cmpt. Biol., 4:e1000234, Nov 2008.

1proof omitted for space

172

[10] J. Ma, et al. Dupcar: reconstructing contiguous ancestral regions with duplications.
Journal of Computational Biology, 15:1007–1027, October 2008.

[11] S. Bérard, C. Gallien, B. Boussau, G. Szöllősi, V. Daubin, and E. Tannier. Evolution
of gene neighborhoods within reconciled phylogenies. Bioinformatics, 28(18):i382–i388,
2012.

[12] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman & Co, 1979.

[13] E. Tannier. Yeast ancestral genome reconstruction: the possibilities of computational
methods. In Comparative Genomics, Proceedings of RECOMB-CG’09, volume 5817 of
LNCS, pages 1–12, 2009.

[14] R. Wittler, J. Maňuch, M. Patterson, and J. Stoye. Consistency of sequence-based gene
clusters. Journal of Computational Biology, 18(9):1023–1039, September 2011.

[15] C. Chauve, J. Maňuch, M. Patterson, and R. Wittler. Tractability results for the
consecutive-ones property with multiplicity. In Proceedings of CPM’11, volume 6661 of
LNCS, pages 90–103, 2011.

[16] L. Lovasz and M. D. Plummer. Matching Theory, volume 29 of Annals of Discr. Math.
N. Holland, 1986.

[17] A. Dessmark, et al. On parallel complexity of maximum f-matching and the degree
sequence problem. In Proceedings of the 19th MFCS, pages 316–325. Springer-Verlag,
1994.

[18] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum matching

in general graphs. In Proceedings of FOCS’80, pages 17–27, 1980.

[19] I. Miklós and E. Tannier. Approximating the number of double cut-and-join scenarios.
Theoretical Computer Science, 439:30–40, 2011.

173

A Branch-and-Cut algorithm for the
Angular TSP

Isabel Méndez-Dı́az1, Federico Pousa1, and Paula Zabala1,2

1Departamento de Computación - FCEN - Universidad de Buenos Aires
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

1 Introduction

The Angular Travelling Salesman Problem (AngTSP) is a generalization of the classical Trav-
eling Salesman Problem (TSP) where the objective is to minimize the total distance travelled
and the total direction change of a tour visiting a set of points in the Euclidean space.

More formally, consider a complete weighted graph G = (V ;E), with V = {v1, . . . , vn} the
set of nodes representing the set points, and E the set of arcs fully connecting the nodes in
V . For each (vivj) ∈ E, we define cij as the euclidean distance between points vi and vj .
Furthermore, given two edges (vivj) and (vjvk) incidents to a same vertex vj , it is defined

the angle between them, δijk = arccos
(
<

vj−vi
‖vj−vi‖ ,

vk−vj
‖vk−vj‖ >

)
, as the absolute value of the

direction change of the movement of travelling from vi to vk, going through vj . The AngTSP
involves finding a hamiltonian tour that minimize the sum of distances and angles.

There are many real world applications where the rotation angle is not negligible, producing
a substantial increment in the total cost or when it is not possible to perform certain rotations
due to mechanical restrictions. One of such cases is the trajectories design in mobile robotics
which is introduced in [1]. The problem is presented in two versions. On the one hand, the
pure angular version, in which the objective function only takes into account the sum of the
angles turned in the circuit. On the other hand, it is proposed a version in which the objective
function is a compromise between minimizing the distances and the angles.The authors prove
that the AngTSP belongs to the NP-Hard class and that it can be approximated in a O(log n)
ratio in polynomial time. Recently, in [2] the problem is studied from a practical point of view.
The authors present a two phase algorithm for the Travelling Salesman Problem for Dubins
Vehicles. The first phase, or tour stage, is to determine the order in which the points will be
visited. The second phase, or trajectory stage, consists in determining the trajectory between
every pair of points. The AngTSP is used in this work to solve the first stage.

In this paper we study the general version of the problem where the objective function
minimizes a weighted combination between the total distance travelled and the total change of
directions. The goal is to design an exact algorithm for the AngTSP based on Integer Linear
Programming models.

This work was partially supported by UBACYT 20020100100666, PICT 2010-304 and 2011-817

175

2 Models

In [2], the authors present a model for the AngTSP based on the Dantzing, Fulkerson and
Johnson model for the TSP. Following this idea, we study the performance of other models
which are well known in the literature for the TSP (see, e.g., [3]) once adapted to the AngTSP.
We consider the following models for the TSP: Dantzing, Fulkerson and Johson(DFJ), Sherali
and Driscoll(SD), Sarin, Sherali and Bhootra(SSB), Sherali, Sarin y Tsai(SST), Gavish and
Graves(GG) and Fox, Gavish and Graves(FGG).

Preliminary computational results, where we analyze different aspects in solving random
instances with 10 to 50 nodes, showed that the DFJ model adapted for the AngTSP shows the
best performance in every aspect, only comparable with the GG model.

The AngTSP-DFJ model consider the binary variables xij that take value 1 iff the tour goes
along edge (vivj) and, to account for angles, we introduce binary variables yijk which take
value 1 if the tour goes along edges (vivj) and (vjvk). The formulation is the following:

minα
n∑

i=1

n∑

j=1
j 6=i

cijxij + β
n∑

i=1

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

δijkyijk

subject to:
n∑

j=1,j 6=i
xij = 1, i = 1, . . . , n (1)

n∑

i=1,i 6=j
xij = 1, j = 1, . . . , n (2)

∑

i,j∈S
xij ≤ |S| − 1, S ⊆ {2, . . . , n}, 2 ≤ |S| ≤ n− 1 (3)

yijk ≥ xij + xjk − 1 i, j, k = 1, . . . , n i 6= j 6= k (4)

xij , yijk i, j, k = 1, . . . , n i 6= j 6= k (5)

where α, β ≥ 0 (α + β = 1), are the relative weights of each objective depending on whether
we want focus on angles, probably in detriment of the total distance, or on solutions where
the most important aspect is the distance travelled, and the rotation angle are less important.
Constraints (1),(2) and (3) are the well known degree and subtour elimination constraints.
Inequalities (4) establish that if both xij and xjk have a value of one, then the variable yijk
must take a value one as well, meaning that an angle is considered whenever its two edges are
used.

The previous results encourage us to strengthen the model in order to develop an exact
algorithm based on this formulation.

3 Polyhedral analysis

The relationship between x and y variables tends to be weak in the sense that lets any y variable
to have a value not depending on the values of its edges. Even though this situation is fixed
by the objective function since it is a minimization problem with non-negative coefficients, we
strengthen the model by adding the following equalities named XYRel :

176

n∑

k=1,k 6=i,j
yijk = xij , i, j = 1, . . . , n i 6= j (6)

n∑

k=1,k 6=i,j
ykij = xij , i, j = 1, . . . , n i 6= j (7)

The first equality indicates that if the edge (vivj) is being used, then there must be exactly
one angle that goes through vi and vj , and then goes to some other point vk. The second
equality is analogous to the first one but in this case vi and vj are the end points of the angle.

With these equalities we now prevent an angle variable to take a positive value if either of
the edge variables related to it has zero value.

We have proved that, for n ≥ 7, the minimal system is characterized by the TSP degree and
XYRel equalities just removing one from (1), one from (6) and n− 1 from (7).

By incorporating equations (6) and (7) to the model, inequalities (4) become redundant
and therefore can be excluded. This produces a tighter formulation for the AngTSP and, in
addition, reduces the overall number of constraints.

We now introduce new valid inequalities to strengthen the notion of angles along the tour.
The first inequality family states that for every 3 points, there must be at most one angle

variable relating them.

yijk + yikj + yjik + yjki + ykij + ykji ≤ 1 ∀i, j, k = 1, . . . , n i 6= j 6= k (8)

The next one states that for every pair of nodes there must be at most one variable indicating
that they are one or two positions apart.

xij +

n∑

k=1,k 6=i,j
yikj + xji +

n∑

k=1,k 6=i,j
yjki ≤ 1 ∀i, j = 1, . . . , n i 6= j (9)

The following constraint represents all the possible positions that a fourth point can take
related to some other three.

yijk ≤ ylij + yjkl +
n∑

r,s=1
r,s 6=i,j,k,l

yrls ∀i, j, k, l =, . . . , n i 6= j 6= k 6= l (10)

Finally, the next inequality forces that in case the tour uses edge (vivj), then node vk could
not be at right and left at the same time.

yijk + ykij ≤ xij ∀i, j, k = 1, . . . , n i 6= j 6= k (11)

4 Branch-and-Cut and computational results

In order to evaluate the strength of these inequalities, we test them in a B&C framework.
Initially, we consider a LP relaxation with the minimal system. The subtour constraints are
not include at once, they are treated as cutting planes during the process. Since the valid
inequality families are polynomial sized, the separation phase is done by enumeration.

We also develop initial heuristics based on a farthest insertion scheme with a posterior 3-opt
local search approach, that show to be very effective in finding primal bounds. Finally, we

177

overload the branching rule by specifying a priority criteria. We prioritize the branching on
an edge variable over an angle one because fixing an edge is much less restrictive than fixing
an angle, leading to more balanced trees.

The algorithm is coded using CPLEX 12.3 and the experiments are run on a workstation
with an Intel(R) Core(TM) i7 CPU (3.40GHz) and 16 Gb of RAM. We consider a set of random
instances varying the number of nodes which are grouped in four sets with 7 instances each.
We set a time limit of 1200 seconds for each instance.

In Table 1 we report the average time when the algorithm finishes before the time limit,
otherwise we report the average percentage final gap (100(UB - LB)/LB). A number between
parenthesis represents the number of instances considered to compute the average.

Instances Nodes
10-19 20-29 30-39 40-49

α = 1.0
CPLEX

time 0.07(7) 0.7(7) 3.11(7) 12.32(7)
gap 0% 0% 0% 0%

B&C
time 0.04(7) 0.24(7) 1.3(7) 4.73(7)
gap 0% 0% 0% 0%

α = 0.75
CPLEX

time 111.61(7) 568.58(2) **** ****
gap 0% 9.87%(2) 29.01%(7) 38.96%(7)

B&C
time 0.08(7) 8.04(7) 206.63(7) 400.93(5)
gap 0% 0% 0% 2.56%(2)

α = 0.5
CPLEX

time 139.59(5) **** **** ****
gap 27.82%(2) 43.70%(7) 58.36%(7) 65.83%(7)

B&C
time 0.3(7) 45.77(7) 506.34(6) 1413.96(1)
gap 0% 0% 2.89%(1) 8.38%(6)

α = 0.25
CPLEX

time 572.01(3) **** **** ****
gap 39.77%(4) 71.95%(7) 81.31%(7) 88.38%(7)

B&C
time 0.84(7) 84.92(7) 425.19(4) ****
gap 0% 0% 3.19%(3) 9.86%(7)

α = 0.0
CPLEX

time 535.78(3) **** **** ****
gap 61.71%(4) 95.46%(7) 100.0%(7) 100.0%(7)

B&C
time 1.94(7) 55.26(7) 449.46(6) 1280.37(1)
gap 0% 0% 4.49%(1) 9.83%(6)

The algorithm designed shows very good results, outperforming by far the CPLEX-default
implementation. The polyhedral analysis is a key factor for the time required to solve each
instance. However, from the results we can see that instances with a higher number of nodes
remains as a challenge, at least in the fixed time limit. A deeper observation of the results
shows that the difficulties tends to come from the dual bound, as the optimal value is usually
obtained in few nodes by the heuristic. This lets us as future work the search of further valid
inequalities to strengthen the formulation.

References

[1] Alok Aggarwal, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber. The angular-
metric traveling salesman problem. In Proceedings of the Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 29:221–229, 1997.

[2] André César Medeiros and Sebastián Urrutia. Discrete optimization methods to determine
trajectories for dubins vehicles. Electronic Notes in Discrete Mathematics, 36:17–24, 2010.

[3] Temel Oncan, Kuban Altinel, and Gilbert Laporte. Invited review: A comparative anal-
ysis of several asymmetric traveling salesman problem formulations. Comput. Oper. Res.,
36(3):637–654, March 2009.

178

Star-shaped mediation in influence games∗

Xavier Molinero1, Fabián Riquelme2, and Maria Serna2

1Department of Applied Mathematics III
Universitat Politècnica de Catalunya, Manresa (Spain). E-mail:xavier.molinero@upc.edu

2Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona (Spain). E-mail:{farisori,mjserna}@lsi.upc.edu

We are interested in analyzing the properties of multi-agent systems [13] where
a set of agents have to take a decision among two possible alternatives with the
help of the social environment or network of the system itself. The ways in which
people influence each other through their interactions in a social network and, in
particular, the social rules that can be used for the spread of influence have been
proposed in an alternative simple game model [11]. However not all individuals play
the same role in the process of taking a decision. In this paper we are interested in
formalizing and analyzing the simple game model that results in a mediation system.
In this scenario we have a social network together with an external participant, the
mediator. The mediator can interact, in different degrees, with the agents and thus
help to reach a decision.

1 Preliminaries

The area of simple games, a subfamily of cooperative game theory, provides a formal model
for analyzing decision systems [14]. A simple game is a set system providing the coalitions
that can made an alternative pass. The ways in which people influence each other through
their interactions in a social network have received a lot of attention in the last decade with
important links to sociology, economics, epidemiology, computer science, and mathematics [1,
9, 6]. Agents face the choice of adopting a specific product or not, choose among competing
programs from providers of mobile telephones, having the option to adopt more than one
product at an extra cost, etc. Those decisions have to be taken by individuals participating in
a social networks. A social network can be represented by a graph where each node is an agent,
individual or player, and each edge represents the degree of influence of one agent over another
one. Several “motivations” (ideas, trends, fashions, ambitions, rules, etc.) can be initiated by
one or more agents and eventually be adopted by the system. The mechanism defining how
these motivations are propagated within the network, from the influence of a small set of nodes
initially motivated, is called the model for influence spread. In this subject, motivated by viral
marketing and other applications, has been established the influence maximization problem

∗This work is partially supported by 2009SGR1137 (ALBCOM). First author is also partially funded by
Grant MTM2012–34426, the second one by Grant BecasChile of “National Commission for Scientific and
Technological Research of Chile” (CONICYT), and the third one by Grant TIN2007–66523 (FORMALISM).

179

[5, 12], and the linear threshold and independent cascade models for influence spread [10]
among other ones [2, 4, 1]. In such a setting there is also work done towards analyzing the
problem from the point of view of non-cooperative game theory [8].

In a recent paper we proposed a simple game based on a model of spread of influence in a
social network, where influence spreads according to the linear threshold model, the so-called
influence games [11]. Now we extend this model in order to incorporate two different levels
of influence spread, the one taking place at the social network and the other one exerted by a
mediator, again analyzed as a simple game.

2 Definitions and Results

For simple games, we follow definitions and notation from [14]. As usual, given a finite set
N = {1, . . . , n} of players or voters, P(N) denotes its power set. A family of subsetsW ⊆ P(N)
is said monotonic when ∀X ∈ W, if X ⊆ Z, then Z ∈ W.

Definition 2.1 A simple game is a tuple (N,W) where N is called the grand coalition, and
W, the set of winning coalitions, is a monotonic family of subsets of N .

In the context of simple games, subsets not appearing in W are called losing coalitions, and
a minimal winning (maximal losing) coalition is a winning coalition such that by removing
(adding) one player results in a losing (winning) coalition. We use W, L, Wm and LM to
denote the sets of winning, losing, minimal winning and maximal losing coalitions. Any of
those sets determine uniquely the game and constitute the usual forms of representation for
simple games [14]. Before introducing formally the family of influence games we need to define
a family of labeled graphs based on the linear threshold model. We use standard graph [3] and
computational complexity [7] notation. Note that player (element of N), coalition (subsets of
N), winning and losing for simple games usually mean, respectively, agent (vertex of V), team
(subsets of V), successful and unsuccessful for influence games.

Definition 2.2 An influence graph is a tuple (G; f), where G = (V,E) is a labeled and directed
graph (without loops) —with V its set of vertices and E its set of edges— and f : V → N is a
labeling function that quantify how influenceable each player or agent is.

Given an influence graph (G; f) and an initial activation set X ⊆ V , the spread of influence
F : V → V is a function such that F (X) is the set of agents activated by an iterative process.
Initially the vertices in X are activated, i.e., X ⊆ F (X). Let be In(u) = {v | (v, u) ∈ E}, at
each step any u 6∈ F (X) such that |In(u)∩F (X)| ≥ f(u) is added to F (X). The process stops
when no additional activation occurs.

Definition 2.3 An influence game is a tuple (G; f, q), where (G; f) is an influence graph and
q ≥ 0 is an integer, the quota. A coalition X ⊆ V is winning iff |F (X)| ≥ q.

In this paper we incorporate another influence layer. On the bottom layer the influence
is exerted among the agents and on another layer the relationship of influence between the
agents and an external mediator is kept. The mediator can exert influence on some nodes and
accept advice from others, thus introducing a modification on the way that influence spreads
through the network. We model the society by a set of nodes V where the relation with the
mediator can be expressed by three disjoint sets A,B,C ⊆ V , where A is formed by the agents

180

that can influence the mediator but are not influenced by him, B contains those agents that
influence and can be influenced by the mediator and, finally, C is formed by the agents that
can be influenced by the mediator but cannot exert influence. This kind of relationship can
be understood by means of a star graph (V ∪ {c}, E) in which the mediator correspond to an
additional vertex c /∈ V and where E = {(u, c) | u ∈ A ∪B} ∪ {(c, v) | v ∈ B ∪ C}.

In the following definition we assume that A,B,C ⊆ V are disjoint.

Definition 2.4 In a star influence game Γ(V,A,B,C, k, q), where k, q ∈ N, a coalition X ⊆ V
is winning iff either (1) |X| ≥ q or (2) |X ∩ (A ∪B)| ≥ k and |X ∪B ∪ C| ≥ q.

In a star mediation influence game Γ(V,E, f,A,B,C, k, q), where ((V,E); f) is an influence
graph and k, q ∈ N, a coalition X ⊆ V is winning iff either (1) X is winning in the influence
game ((V,E); f, q) or (2) |X ∩ (A∪B)| ≥ k and |X ∪B ∪C| is winning in the influence game
((V,E); f, q).

Theorem 2.5 Given a star influence game, determineWm or LM can be done in incremental-
polynomial time.

Next we also analyze some properties of an influence game, conditions under which the
system can reach an alternative, as decision problems from a computational point of view:

IsProper: Determine whether the complement of any winning coalition is losing.
IsStrong: Determine whether the complement of any losing coalition is winning.
IsDecisive: Determine whether a coalition is winning iff its complement is losing.

Moreover, other problems consider properties of an agent i with respect to an influence game:

IsDummy: In any winning coalition X including i, is X \ {i} also winning?
IsPasser: Is any coalition including i winning?
IsVetoer: Is any coalition not including i losing?
IsDictator: Does the set of winning coalitions coincide with the set of coalitions including i?

Theorem 2.6 Given a star influence game, the problems IsProper, IsStrong, IsDecisive,
IsDummy, IsPasser, IsVetoer and IsDictator are in P.

Theorem 2.7 Given a star mediation influence game, the problems IsProper, IsStrong,
IsDecisive and IsDummy are coNP-complete, while IsPasser, IsVetoer and IsDictator
are in P.

The above results are obtained by providing characterizations of the properties in terms of
q, k, |A|, |B| and |C|.

3 Future work

There remain many open problems, in particular to analyze whether different conditions on
the influence relationship among the agents and the mediator can lead to characterizations or
polynomial time algorithms for the problems considered in this paper or for other problems of
interest, like some coming from social choice theory [15]. We have analyzed the results of the
superposition of two influence networks in which one of them is restricted to be a star a future
line of research is to analyze influence games resulting from the superposition of two or more
complex social networks. Another area of interest is to consider weighted influence networks
with edge weights or networks with several mediators related to different parts of the network
with or without common agents.

181

References

[1] K. R. Apt and E. Markakis. Diffusion in social networks with competing products. In
SAGT 2011, LNCS, 6982:212–223, 2011.

[2] S. Bharathi, D. Kempe, and M. Salek. Competitive infuence maximization in social net-
works. In WINE 2007, LNCS, 4858:306–311, 2007.

[3] B. Bollobás. Modern graph theory. Springer, 1998.

[4] A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive infuence in social
networks. In WINE 2010, LNCS, 6484:539–550, 2010.

[5] P. Domingos and M. Richardson. Mining the network value of customers. In ACM KDD
2001, pages 57–66, 2001.

[6] D. Easley and J. Kleinberg. Networks crowds and markets. Cambridge University Press,
2010.

[7] M. R. Garey and D. S. Johnson. Computers and intractability, a guide to the theory of
NP-Completness. W.H. Freeman and Company, New York, USA, 1999.

[8] M. T. Irfan and L. E. Ortiz. A game-theoretic approach to influence in networks. Associ-
ation for the Advancement of Artificial Intelligence, 2011.

[9] M. Jackson. Social and economic networks. Princeton University Press, 2008.

[10] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. In ACM KDD 2003, pages 137–146, 2003.

[11] X. Molinero, F. Riquelme, and M. J. Serna. Social influence as a voting system: a com-
plexity analysis of parameters and properties. CoRR abs/1208.3751.

[12] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In
ACM KDD 2002, pages 61–70, 2002.

[13] Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, Cambridge, UK, 2009.

[14] A. Taylor and W. Zwicker. Simple games: Desirability relations, trading, pseudoweight-
ings. Princeton University Press, New Jersey, 1st edition, 1999.

[15] R. van den Brink, A. Rusinowska, and F. Steffen. Measuring power and satisfaction in
societies with opinion leaders: Dictator and opinion leader properties. Homo Oeconomicus,
28:161–185, 2011.

182

Characterising subclasses of perfect graphs
with respect to partial orders related to

edge contraction

Haiko Müller1 and Samuel Wilson1

1School of Computing, University of Leeds, UK

Characterising graph classes by forbidding a set of graphs has been a common
feature in graph theory for many years. Up to date many classes have been char-
acterised with respect to the induced subgraph relation and there are a plethora of
results regarding graph classes closed under the minor relation. We consider the
characterisation of graph classes closed under partial orders including edge contrac-
tion as an operation. More concretely we consider contraction minors and a newly
defined partial order, under which many of the graph classes considered here can
be characterised by a finite minimal forbidden set.

1 Introduction

The characterisation of graph classes by forbidding a set of graphs has been extensively studied
providing characterisations for many graph classes, especially surrounding the class of perfect
graphs. It is well known that any class closed under a partial order admits a characterisation
by forbidding a set of graphs but finding the forbidden set is harder. With respect to the
induced subgraph relation many of the classes surrounding perfect graphs have a description
of their forbidden set but little effort has gone into considering a description with respect to
different partial orders.
The study of partial orders on the set of all graphs has become increasingly popular thanks

to the graph minor theorem by Robertson and Seymour. In the series of over 20 papers
they have shown a number of results for classes closed under the minor relation, perhaps most
interestingly that for any graph class closed under the minor relationship the minimal forbidden
set is finite. This result is shown by proving that the relation forms a well-quasi ordering on
the set of all graphs and therefore demonstrating that no infinite antichains exists. The graph
minor theorem is a celebrated result but many of the subclasses of perfect graphs are not closed
under the minor relation so the result does not apply. In addition there is no similar result for
other partial orders under which the subclasses of perfect graphs are closed.
This motivates the search for alternative characterisations of graph classes. The contraction

minor relation is an interesting partial order as the complexity for recognising if one graph
is contained in another with respect to the contraction minor relation is an open problem,

The research presented in this paper is work towards the Ph.D of the second author, who is funded by EPSRC
Doctoral Training Grant.

183

unlike for the minor relation where the graph containment problem is known to belong to the
complexity class FPT. We characterise a number of well studied graph classes by forbidding
a set of graphs with respect to the contraction minor relation, we then show an interesting
connection between the minimal forbidden set with respect to the induced subgraph relation
and the minimal forbidden set for a newly defined partial order (6mw), for which most classes
considered here have a finite minimal forbidden set.

2 Definitions

Here we consider only finite simple undirected graphs. A graph G is a contraction minor of a
graph H denoted G 6c H if there exists a set of edges U ⊆ E(H) such that the contraction of
the edges in U results in a graph isomorphic to G. For completeness we include the definition
of the induced subgraph relation, a graph G is an induced subgraph of H denoted G 6i H if
there exists a set of vertices U ⊆ V (H) such H[V (H) \ U] is isomorphic to G.
Every class C of graphs closed under a partial order 6 is characterised by a set F = {H |

H /∈ C ∧ ∀G (G 6 H ⇒ G ≃ H ∨G ∈ C)} of minimal forbidden graphs, where a partial order
can not be determined from the context it is explicitly given as a subscript, e.g. Fc denotes
the minimal forbidden set with respect to contraction minors. For a set F of graphs, the class
of F-free graphs is {G | ∀H ∈ F (H 66 G)}. This class is closed under 6 and F contains all of
the minimal forbidden graphs.
We define the following graphs classes adopted from [1];

Cn = {Ck | k ≥ n} Dn = {2K1 ⊲⊳ kK1 | k ≥ n}
Kn = {kK1 | k ≥ n} Wn = {C4 ⊲⊳ kK1 | k ≥ n}
Wk = Ck ⊲⊳ K1

We define a new partial order denoted 6mw where G 6mw H if H can be transformed into a
graph isomorphic to G by a series of edge contractions and inverse false twin operations where
the inverse false twin operation is defined as follows; let G be a graph and let u, v ∈ V (G) then
u, v are false twins if the neighbourhood of u and v are equal and uv /∈ E(G). The inverse
false twin operation allows for the removal of u.

3 Contribution

We show a number of results for characterising graph classes related to perfect graphs with
respect to contraction minors and with respect to 6mw.

Theorem 3.1. Let G be a connected graph, we show the following conditions are equivalent;

(i) G is a chordal graph.

(ii) G does not contain {Cn | n ≥ 4} with respect to 6i [6].

(iii) G does not contain D2 ∪W0 with respect to 6c.

(iv) G does not contain {C4, C4 ⊲⊳ K1} with respect to 6mw.

It is well known that the class of split graphs is the intersection of the classes chordal and
co-chordal. With respect to contraction minors and 6mw the set of minimal forbidden graphs
for the class of co-chordal graphs is infinite since {Cn | n ≥ 6} forms an antichain. Each
element of this antichain is comparable to W4.

184

Theorem 3.2. Let G be a connected graph, we show the following conditions are equivalent;

(i) G is a split graph.

(ii) G does not contain {2K2, C4, C5} with respect to 6i [2].

(iii) G does not contain D2 ∪W0 ∪ {P5, P , 2K2 ⊲⊳ K1} with respect to 6c .

(iv) G does not contain {C4,W4, P5, P , 2K2 ⊲⊳ K1} with respect to 6mw (Figure 1).

Figure 1: W4, 2K2 ⊲⊳ K1, P , P5, C4: Contraction minimal non-split graphs.

Theorem 3.3. Let G be a connected graph, we show the following conditions are equivalent;

(i) G is a cograph.

(ii) G does not contain P4 with respect to 6i [1, Theorem 11.3.3].

(iii) G does not contain {P4, P4 ⊲⊳ K1, P5, C5, C6} with respect to 6mw (Figure 2).

Figure 2: P4, P4 ⊲⊳ K1, P5, C5, C6: Contraction minimal non-cographs

From the above results we distil a general relationship between Fi and Fmw for any class C
closed under vertex deletion and edge contraction.

Theorem 3.4. Any class C which has a finite forbidden set with respect to induced subgraphs
and is closed under edge contraction has a finite forbidden set with respect to 6mw and the
order of the largest forbidden graphs is bounded.

Proof. Let C be a class closed under vertex deletion and edge contraction and let Fi,Fmw

denote the minimal forbidden sets. Let H /∈ C which implies ∃F ∈ Fi | F 6i H. Contracting
the edges {uv | u, v ∈ {V (H) \V (F)}} leaves an independent set S and a copy of F with some
edges between S and V (F). As 6mw allows the removal of false twins the number of additional
vertices is equal to the number of subsets of vertices in H. Fi is finite therefore there is a
maximum element, let k = max{|F | | F ∈ Fi}. Then the maximum number of vertices of a
graph in Fmw is 2k + k.

Lemma 3.5. Let the graph classes C, C′ be F-free,F ′-free respectively, then C ∩ C′ is (F ∪
F ′)-free.

• Interval graphs = chordal ∩ co-comparability

• Trivially perfect = chordal ∩ cograph

• co-Trivially perfect = co-chordal ∩ cograph

• Threshold graphs = Trivially perfect ∩ co-Trivially perfect

From these characterisations we obtain the results in Table 1. It is noteworthy that for
C1 ∩ C2, F1 ∪ F2 ⊆ G \ (C1 ∩ C2) but F1 ∪ F2 may contain graphs which are not minimal with
respect to the partial order.

185

Class of . . . graphs Minimal forbidden graphs

co-chordal 6i Cn+4
∗
for n ≥ 0

6mw Cn+4 + additional vertices
∗

trivially perfect 6i C4, P4 [5]

6mw P4, P4 ⊲⊳ K1, C4,W4

co-trivially perfect 6i 2K2, P4 [1, Theorem 6.6.1]

6mw 2K2 ⊲⊳ K1, P4, P4 ⊲⊳ K1, C5, C6

threshold 6i 2K2, C4, P4 [1, Theorem 6.6.3]

6mw P4, P4 ⊲⊳ K1, 2K2 ⊲⊳ K1, C4,W4

interval 6i Cn+4
∗,T2,X31,XF2

n+1∗,XF3
n∗ for n ≥ 0 [4]

6mw {C4,W4,T2,X31,XF2
1, S3, . . .

co-comparability 6i Cn+6,T2,X2,X3,X30,X31,X32,X33 ,X34,X35,X36,XF2
n+1∗,

XF3
n∗,XF4

n∗, co-XF1
2n+3∗, co-XF5

2n+3∗, co-XF6
2n+2∗, C2n+1

for n ≥ 0 [3] *

6mw {T2, S3, S3, S3 − e, C6, D0, D1, D2, . . .

Table 1: Forbidden graphs for a collection of graph classes: ∗ denotes an infinite set.

Conclusions

We have presented a set of equivalent definitions for a number of graph classes related to perfect
graphs, these graph classes had previously been characterised by forbidding a set of induced
subgraphs but the characterisation with respect to other partial order had gone unexplored.
This contribution shows that with respect to the contraction minor relation the minimal for-
bidden set is often infinite, this result is an effect of an infinite series of false twins. We have
introduced a new partial order which allows a finite forbidden set characterisation and we have
established an upper bound on the size of the minimal forbidden graphs with respect to 6mw

if the class has a finite minimal forbidden set with respect to induced subgraphs.

References

[1] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph classes: a survey. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] S. Foldes and P.L. Hammer. Split graphs. Congr. Numer, 19:311–315, 1977.
[3] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Hungarica, 18:25–66, 1967.
[4] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and of interval

graphs. Technical report, DTIC Document, 1962.
[5] M.C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105 – 107, 1978.
[6] A. Hajnal and J. Surányi. Über die Auflösung von Graphen in vollständige Teilgraphen.

Univ Sci. Budapest, Eötvös Sect. Math. 1, pages 113 – 121, 1958.

186

The VC-Dimension of Graphs with Respect
to k-Connected Subgraphs

Andrea Munaro1

1Dept. of Computer Science and Hausdorff Center for Mathematics, University of Bonn,
aerdna.munaro@gmail.com

1 Introduction

The notion now called VC-dimension of a set system was introduced by Vapnik and Chervo-
nenkis [5]. It represents a prominent measure of the “complexity” of the set system. Let H be
a set system on a finite set X. A subset Y ⊆ X is shattered by H if {E ∩ Y : E ∈ H} = 2Y .
The VC-dimension of H is defined as the maximum size of a set shattered by H. We are
interested in studying the VC-dimension of the set system on the vertex set of some graph
which is induced by a certain family of its subgraphs. The definitions above can be adapted
to our special setting as follows. Let G = (V,E) be a finite simple graph and let P be a family
of subgraphs of G. A subset A ⊆ V is P-shattered if every subset of A can be obtained as the
intersection of V (H), for H ∈ P, with A. The VC-dimension of G with respect to P, denoted
by VCP(G), is defined as the maximum size of a P-shattered subset. In this way we obtain
several different notions of VC-dimension, each one related to a special family of subgraphs.
This study was first initiated in a seminal paper by Haussler and Welzl [2]. They noticed that
since a graph of order n has n closed neighbourhoods, then its VC-dimension with respect to
closed neighbourhoods is at most blog2 nc. Kranakis et al. [3] investigated the VC-dimensions
with respect to other families of subgraphs, such as the family of trees, connected graphs,
paths, cycles and stars. In particular they proved that, denoting by VCcon the VC-dimension
with respect to connected subgraphs, the following holds.

Theorem 1 (Kranakis et al. [3]). Let `(G) denotes the number of leaves in a maximum leaf
spanning tree of G. Then `(G) ≤ VCcon(G) ≤ `(G) + 1, for any graph G.

From another perspective, a natural question is to investigate the computational complexity
of computing VCP(G) for a given graph G and a family of its subgraphs P.

Graph VCP Dimension

Instance: A graph G and a number s ≥ 1.
Question: Does VCP(G) ≥ s hold?

Kranakis et al. [3] showed that Graph VCcon Dimension is NP-complete. In the following
sections we continue the study initiated in [3] by proving an analogue of Theorem 1 for k-
connected subgraphs and by giving hardness results for Graph VCk−con Dimension.

187

2 Bounds on the VC-dimension

We extend Theorem 1 by considering families of k-connected subgraphs, for k ≥ 2. Concerning
the upper bound, the idea is to construct a spanning tree with at least VCk−con(G) + k − 1
leaves. We fix a shattered set A of maximum cardinality and choose an arbitrary vertex r ∈ A
as the root. Then we consider some k neighbours of r, say u1, . . . , uk, and we try to “attach”
the remaining vertices in A to the graph ({r, u1, . . . , uk} , {ru1, . . . , ruk}) via appropriate paths.

Theorem 2. VCk−con(G) ≤ `(G)− k + 1, for any graph G and k ≥ 2.

By considering the complete graph on k + 1 vertices, it is easy to see that the bound above
is tight. As for a lower bound, we note that having a sufficiently large complete subgraph is
enough to guarantee shattering by k-connected subgraphs.

Theorem 3. Let G be a graph of order n, size m and maximum degree ∆. For k ≥ 2,

VCk−con(G) ≥ `(G)− k + 1−
(
n+ 2−

⌈
n− 2

∆− 1

⌉
− n2

n2 − 2m

)
.

3 The decision problem

We prove NP-completeness of Graph VCk−con Dimension by a reduction from the decision
version of Set Multicover, a generalization of the well-known NP-complete problem Set
Cover.

Theorem 4. Graph VCk−con Dimension is NP-complete even for split strongly chordal
graphs.

Sketch of Proof. Membership in NP follows from the fact that if G and G′ are two k-connected
graphs such that |V (G) ∩ V (G′)| ≥ k, then G ∪G′ is k-connected as well.

As for NP-hardness, recall that an instance of Set Multicover consists of a set S =
{a1, . . . , an}, a collection of subsets S1, . . . , Sm ⊆ S and integers k and t. The question is if
there exists an index set I ⊆ {1, . . . ,m} such that

⋃
i∈I Si = S, each ai is covered by at least

k distinct subsets and |I| ≤ t.
Our reduction constructs a graph G = (V,E) as follows. The set of vertices V is formed by

four pairwise disjoint sets A, B, C and D. A is an independent set of n · (t + k + 1) vertices
arranged in n columns of t+k+1 vertices each (for 1 ≤ j ≤ n, each element in the j-th column
corresponds to a copy of aj). B = {v1, . . . , vm} is a clique, where vi corresponds to the set
Si. C is a clique of size k. D is an independent set of t + m + 1 vertices. Each vertex in C
is connected to all vertices in B (therefore, B ∪ C is a clique of size m + k) and D. Finally,
vi ∈ B is connected to every copy of aj ∈ A if and only if aj ∈ Si.

Since B ∪ C is a clique and A ∪ D is an independent set, then G is split. Moreover, it is
clearly chordal. Now consider a cycle (w1, w2, . . . , w`) of even length ` ≥ 6. There exist two
consecutive vertices wi and wi+1 which belong to B ∪ C. If wi−2 ∈ B ∪ C, then wi−2wi+1 is
an odd chord. Otherwise wi−3 ∈ B ∪ C and wi−3wi is an odd chord. Therefore, G is strongly
chordal.

Finally it is not difficult to prove that there is an index set I ⊆ {1, . . . ,m} such that⋃
i∈I Si = S, each ai is covered by at least k distinct subsets and |I| ≤ t, if and only if

VCk−con(G) ≥ |V | − (t+ k).

188

Now we consider the problem Graph VC2−con Dimension and prove that it remains NP-
complete for planar graphs. A natural way to prove NP-hardness of a planar problem is to
reduce from another planar problem. Our proof is indeed based on a variant of Planar
Monotone 3-Sat, which was shown to be NP-complete by de Berg and Khosravi [1]. Since
their problem has already found many and diverse applications in NP-hardness proofs, we think
that our variant may be useful as well.

Let U = {x1, . . . , xn} be a set of n boolean variables and let C = C1 ∧ · · · ∧Cm be a 3-CNF
formula defined over U , where each clause Ci is the disjunction of exactly three literals. 1-
In-3-Sat is the problem of deciding whether C is satisfiable in 1-in-3 sense. An instance C of
1-In-3-Sat is planar if the associated variable-clause graph G(C) is planar. A planar instance
of 1-In-3-Sat has a rectilinear representation if G(C) can be drawn as follows: the vertices are
drawn as rectangles, with all the rectangles representing variables on a horizontal line, and the
edges are vertical segments. A clause with only positive literals is a positive clause, a clause
with only negative literals is a negative clause and a clause with both positive and negative
literals is a mixed clause. An instance of 1-In-3-Sat is called monotone if it does not contain
any mixed clause. Given a planar monotone instance C of 1-In-3-Sat, a monotone rectilinear
representation of C is a rectilinear representation where all positive clauses are drawn above the
variables and all negative clauses are drawn below the variables. We can define the following
decision problem.

Planar Monotone 1-In-3-Sat

Instance: A planar monotone 3-CNF formula C defined over U , together with
a monotone rectilinear representation.

Question: Is C satisfiable (in 1-in-3 sense)?

Theorem 5. Planar Monotone 1-In-3-Sat is NP-complete.

Our proof of Theorem 5 is based on a reduction from a variant of Planar 1-In-3-Sat shown
to be NP-complete by Mulzer and Rote [4].

Finally we show that Graph VC2−con Dimension remains NP-complete for planar graphs by
a reduction from Planar Monotone 1-In-3-Sat. For an instance C of Planar Monotone
1-In-3-Sat, our reduction constructs a planar graph GC by adding several planar gadgets to
the variable-clause graph G(C).

Theorem 6. Graph VC2−con Dimension is NP-complete for planar graphs.

Sketch of Proof. We use a reduction from Planar Monotone 1-In-3-Sat. Let C be an
instance of Planar Monotone 1-In-3-Sat. We modify the associated graph G(C) to get a
planar graph GC as follows. First we define a shamrock as the graph constructed successively
from a triangle C, called the centre of the shamrock, by adding q ears of length 2 to every pair
of vertices of C. These q ears constitute a leaf of the shamrock. For a fixed planar drawing of
a shamrock, the exterior vertex in a leaf is called the peak of the leaf, while the other vertices
are called the veins of the leaf. For every clause, we introduce a shamrock with p veins in every
leaf (for a p to be chosen later) as depicted in Figure 1(a). Each peak of a leaf in the shamrock
corresponds to a literal in the clause. For every variable x, we introduce a variable gadget as
depicted in Figure 1(b). It consists of two parts. The first part is a 4-cycle with two specified
opposite vertices corresponding to the literals x and x, called the literal vertices, and with two
horizontal vertices. The second part is a shamrock with p veins in every leaf and no peaks

189

which is connected to the 4-cycle via three edges with endpoints in the centre of the shamrock.
We require that two of these edges join x and x to the centre of the shamrock. We connect
every pair of consecutive variables in the monotone rectilinear representation of C through a
variable connector gadget as depicted in Figure 1(c). It consists of p + 1 independent paths,
one of which is of length 1, while the remainings are all of length 2.

y

z

x

(a)

x

x

(b)

...

(c)

Figure 1: Gadgets for the reduction of Planar Monotone 1-In-3-Sat to Graph VC2−con Dimension. (a)
Clause gadget corresponding to the clause (x ∨ y ∨ z). (b) Variable gadget. (c) Variable connector
gadget.

Finally, we connect clause and variable gadgets via edges joining every peak in a shamrock
with the corresponding literal in the variable gadget. We do this according to the monotone
rectilinear representation of G(C) and we define p := 5m+6n+1. Clearly, the above construc-
tion can be done in polynomial time and the resulting graph GC = (V,E) is planar. We can
prove that VC2−con(GC) ≥ |V | − (5m+ 6n) if and only if C is satisfiable (in 1-in-3 sense).

On the positive side, we have the following result.

Theorem 7. Graph VCk−con Dimension is decidable in linear time for threshold graphs.

References

[1] M. de Berg and A. Khosravi. Optimal Binary Space Partitions for Segments in the Plane.
Int. J. Comput. Geometry Appl., 22(3):187–206, 2012.

[2] D. Haussler and E. Welzl. ε-Nets and Simplex Range Queries. Discrete & Computational
Geometry, 2:127–151, 1987.

[3] E. Kranakis, D. Krizanc, B. Ruf, J. Urrutia, and G. J. Woeginger. The VC-dimension of
set systems defined by graphs. Discrete Applied Mathematics, 77(3):237–257, 1997.

[4] W. Mulzer and G. Rote. Minimum weight triangulation is NP-hard. In Proceedings of
the 22nd ACM Symposium on Computational Geometry, Sedona, Arizona, USA, June 5-7,
2006, pages 1–10. ACM, 2006.

[5] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and Its Applications, 16(2):264–280,
1971.

190

Coloring of signed graphs

S. Pirzada1, Muhammad Ali Khan2, and E. Sampathkumar3

1Department of Mathematics, University of Kashmir, Srinagar, India
2King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

3Department of Studies in Mathematics, University of Mysore, India

A signed graph G is formed by assigning either a ‘+’ or ‘−’ sign to every edge of a
graph Gu = (V,E). The negative degree d−(v) of a vertex v in a signed graph is the
number of negative edges incident at v. We say that an edge uv in a signed graph
is a c-edge if both d−(u) and d−(v) are even or both are odd. A c-complete signed
graph is a simple signed graph in which every two vertices form a c-edge. Over
the years, different notions of vertex colorings have been defined for signed graphs.
Here we define a new type of coloring that distinguishes between the end vertices of
c-edges. By an s-coloring of a signed graph we mean a coloring of its vertices such
that any two vertices joined by a c-edge receive different colors. The s-chromatic
number χs(G) of a signed graph is the minimum number of colors required to s-color
the vertices of G. In this paper, several bounds are obtained for χs(G) that are
similar to those for the chromatic number of a graph. We show that the number of
s-colorings of a signed graph G is a polynomial function of the number k of colors,
which we call the s-chromatic polynomial S(G, k) of G. We develop a deletion-
contraction type recursive procedure to determine S(G, k) for any signed graph.
The deletion and contraction operations we use are modifications of the traditional
operations as the traditional operations do not work for counting s-colorings. We
introduce the notions of c-complete and c-full signed graphs, characterizing different
classes of c-full signed graphs and determining the number of c-complete signed
graphs on a given number of vertices. Furthermore, the relationship between s-
coloring and the existing signed graph colorings is also investigated.

1 Introduction

A signed graph is a triple G = (V,E, σ), where Gu = (V,E) is a graph and σ : E → {+,−}
is a sign function. The graph Gu is called the underlying graph of G. An edge e is said
to be positive if σ(e) = + and negative otherwise. For a vertex v in a signed graph G, let
d+(v) and d−(v) respectively denote the number of positive and negative edges incident at v.
There exist two types of coloring of signed graphs in the literature. Harary and Cartwright [1]
define a coloring of signed graph in which no two end vertices of a negative edge are colored
the same, whereas the end vertices of a positive edge are necessarily colored the same. This
process of coloring is also referred to as signed graph partitioning or clustering and is widely
used in network analysis. The motivation is to partition the vertices of a network in such a
way that any two actors (vertices) that have a negative relationship (edge) are partitioned

191

into different color classes while the actors having a positive relationship are grouped together
in the same color class. However, not all signed graphs can be colored using this type of
coloring (for instance, consider the complete graph K3 whose edges are alternately assigned
+ and − signs) . In the sequel we refer to this coloring as the p-coloring and say that a
signed graph is partitionable or p-colorable if it can be colored in this way. The corresponding
chromatic number, if it exists, will be called the p-chromatic number and denoted by χp(G).
The other existing notion of coloring is due to Zaslavsky [2,3], who defines a coloring of a
signed graph G = (V,E, σ) as a function f : V → {0,±1, . . . ,±n} such that if uv is an edge,
f(u) 6= f(v) and if uv is a negative edge with f(u) = i, then f(v) 6= −i. Zaslavsky obtained
a chromatic polynomial for his coloring and showed that the traditional deletion-contraction
recursion can be used to determine the chromatic polynomial of a signed graph. We refer
to this coloring, the corresponding chromatic number and the related chromatic polynomial
as z-coloring, z-chromatic number denoted by χz(G) and z-chromatic polynomial denoted by
Pz(G, k) respectively.

In this paper, we define a new type of vertex coloring for signed graphs. Given a signed
graph G, two vertices u and v of G are said to be c-adjacent if uv is an edge and d−(u) and
d−(v) are either both even or both odd. In this case, we call the edge uv a c-edge. For a vertex
v, let Sgn(v) denote the product of the signs of the edges incident at v. Clearly, two adjacent
vertices u and v are c-adjacent if and only if Sgn(u) = Sgn(v). We define an s-coloring of
a signed graph G as a coloring of its vertices such that no two c-adjacent vertices receive the
same color. The s-chromatic number, χs(G), is the minimum number of colors required for
s-coloring G.

We begin by introducing some new terminology. A path P in a signed graph G = (V,E, σ)
is a c-path if all edges in P are c-edges. Clearly, a path is a c-path if and only if d−(v) is either
even or odd for all vertices v in P . A signed graph G is c-connected if any two vertices in G
are connected by a c-path. A set S ⊂ V is c-independent if no two vertices in S are c-adjacent.
The c-independence number βc(G) of G is the maximum cardinality of a c-independent set.
Thus χs(G) is the minimum order of a partition of V into c-independent sets. Given a signed
graph G = (V,E, σ), the c-graph of G is an unsigned graph given by Gc = (V,Ec), where Ec is
the set of c-edges of G. Clearly, for any signed graph G, we have βc(G) = β(Gc), where β(Gc)
is the independence number of the c-graph Gc of G. We say that a signed graph G is complete
is any two vertices in G are adjacent and c-complete if any two vertices in G are c-adjacent.
Thus G is a c-complete signed graph of order n if and only if χs(G) = n. A signed graph G
is c-full if every edge in G is a c-edge. For simple signed graphs the notions of c-completeness
and c-fullness coincide.

2 Results

Proposition 1. For a signed graph G of order n, the following statements are equivalent. (i)
G is c-complete, (ii) G is complete and c-full, (iii) χs(G) = n, (iv) βc(G) = 1.

The following result characterizes c-full signed paths.

Theorem 2. Let Pn denote the signed path of order n. (i) If n is even, then Pn is c-full if and
only if all the edges in Pn are positive or the edges of Pn are alternately negative and positive,
starting and ending with negative edges, (ii) If n is odd, then Pn is c-full if and only if all the
edges in Pn are positive.

192

From the above result, we have the following observations which determines the number of
c-full signed paths.

Corollary 3. (i) Among all signed paths of order n ≥ 2 and n even, there are exactly two
signed paths which are c-full. (ii) Among all signed paths of order n ≥ 2 and n odd, there is
exactly one signed path which is c-full.

The following result characterizes c-full signed cycles.

Theorem 4. Let Cn be a signed cycle of order n. (i) If n is even, then Cn is c-full if and only
either all the edges in Cn are either positive or all edges in Cn are negative or (c) the edges in
Cn are alternatively positive and negative, (ii) If n is odd, then Cn is c-full if and only if (a)
all the edges in Cn are positive or (b) all the edges are in Cn are negative.

In a signed graph G, if d−(v) is even for all v in G, then no two adjacent vertices receive the
same color in an s-coloring of G. This is also true d−(v) is odd for all v in G. This implies the
following.

Theorem 5. For a connected signed graph G, the following statements are equivalent. (i) G is
c-full, (ii) G is c-connected, (iii) The negative degree d−(v) is even (or odd) for all v ∈ G, (iv)
For each edge uv in G, Sgn(u) = Sgn(v), (v) χs(G) = χ(Gu), where χ(Gu) is the chromatic
number of the underlying graph Gu of G.

We now determine the number of c-complete signed graphs on a given number of vertices.
There are exactly two c-complete signed graphs on three vertices, namely the one in which all
the edges are signed positive and its s-complement. There are six c-complete signed graphs
on four vertices, the two c-complete signed graphs K4 with all edges having the same positive
sign and all edges having the same negative sign.

Theorem 6. There are exactly 2n + 2 c-complete signed graphs on 2n vertices, while the
number of c-complete signed graphs on 2n+ 1 vertices is n+ 1.

In a signed graph G, the degree of a vertex v is deg(v) = d+(v) + d−(v). For some integer
r ≥ 0. G is r-regular if deg(v) = r for all vertices v in G. Further, G is r+-regular (r−-regular)
if d+(v) = r (d−(v) = r), for all vertices v in G. The s-complement Gs of a signed graph G is
obtained by interchanging the positive signs and negative signs on the edges of G.

Proposition 7. Let G be a connected signed graph which is regular of degree r. Then (i) G is
c-connected if and only if Gs is c-connected, (ii) G is c-complete if and only if Gs is c-complete,
(iii) if G is r−-regular, then G is c-connected. The converse is not true.

We note that a c-complete signed graph need not be r+-regular or r−-regular for any r ≥ 0.
Also the s-complement Gs need not be c-connected. For example, the graph G in Figure 3, is
r−-regular, where r = 1 and c-connected, but its s-complement is not c-connected.

Proposition 8. Let G be a c-connected signed graph. Then its s-complement Gs is c-connected
if and only if d+(v) is even or odd for all vertices v in G.

Let P be a coloring of the vertices of a graph G. A set S ⊂ V is a color class (with respect
to P) if all the vertices of S receive the same color in some P coloring of G. For example, in
the usual coloring of a graph any independent set of vertices is a color class. Motivated by this

193

definition, we define a color class in a s-coloring as follows. A set of vertices in a signed graph
is an s − color class if all the vertices in S receive the same color in some s-coloring of G.
Note that an s-color class is a c-independent set. Thus the s-chromatic number χs(G) is the
minimum order of a partition of the vertex set of G into s-color classes or c-independent sets.
Also note that an independent set is c-independent. The c-independence number β0c(G) of a
signed graph is the maximum cardinality of a c-independent set. Clearly, since any independent
set is c-independent, we have for any signed graph β0(G) ≤ β0c, where β0 is the independence
number of the underlying graph Gu of G. As in graphs we have the following bounds for χs(G).

Proposition 9. For any signed graph of order n, nβ0c ≤ χs(G) ≤ n− β0c(G) + 1.

A set S of vertices in a signed graph G is a c-clique if the subgraph < S > induced by S is
c-complete. The c− graph Gc of a signed graph G is a graph having the same vertex set as G
and two vertices u and v are adjacent in Gc if and only if uv is a c-edge in G. Clearly the degree
of a vertex v in Gc is equal to its c-degree in G and χs(G) = χ(Gc). Also ∆c(G) = ∆(Gc),
δc(G) = δ(Gc) and βs0(G) = β0(Gc). It is well known that the determination of chromatic
number of a graph is NP -hard. In view of the above remarks and the fact χs(G) = χ(Gc), we
deduce many bounds for χs(G) from the well known bounds of the chromatic number χ(Gc)
of the graph Gc.

Proposition 10. For a signed graph G, (i) χs(G) ≤ 1 +max δc(G
′), where the maximum is

taken over all induced sub-signed graphs G′ of G, (ii) χs(G) ≤ 1 + ∆s(G), (iii) χs(G) ≤ χ(Gu)
and equality holds if and only if G is c-full, (iv) The chromatic number of a signed tree is less
or equal to two.

Let G = (V,E, σ) be a signed graph, where Gu = (V,E) is a graph with possible multiple
edges but no loops, such that for any multiple edges e and f , σ(e) = σ(f). The aim of this
section is to develop a chromatic polynomial for s-coloring of signed graphs on the same lines
as the chromatic polynomial of ordinary unsigned graphs. Let S(G, k) denote the number
of distinct s-colorings of G as a function of the number of colors k. Let P (H, k) denote the
classical chromatic polynomial of a graph G. First we observe that the number of s-colorings
of G = (V,E, σ) using k colors is the same as the number of vertex colorings of the c-graph
Gc of G. Thus S(G, k) = P (Gc, k) and so S(G, k) is a polynomial in k. Furthermore, the
following result shows that several properties of chromatic polynomial are also satisfied by the
s-chromatic polynomial.

Theorem 11. Given a signed graph G = (V,E, σ), the following holds for the polynomial
S(G, k). (i) The degree of S(G, k) is |V |, (ii) The leading coefficient of S(G, k) is 1, (iii) The
coefficient of k|V |−1 in S(G, k) is equal to − |Ec|, (iv) The constant term of S(G, k) equals 0,
(v) The coefficient of k in S(G, k) is nonzero if and only if G is c-connected, (vi) If the lowest
nonzero coefficient of S(G, k) is of kp then the number of c-connected components of G is equal
to p.

Theorem 12. 1. Given a signed graph G = (V,E, σ), let G− = (V,Ec, σ−) be the signed
graph obtained by deleting all the non c-edges from G and assigning negative sign to all
c-edges of G, then χs(G) = χp(G

−).

2. Let G = (V,E, σ) be a signed graph and let G+ = (V,Ec, σ+) be the signed graph obtained
by deleting all non c-edges from G and assigning positive sign to all c-edges of G. Then
χs(G) = 2χz(G

+) + 1.

194

References

[1] D. Cartwright, F. Harary, On the coloring of signed graphs, Elem. Math., 23 (1968) 85-89.

[2] T. Zaslavsky, Signed graph coloring, Disc. Math., 39 (1982) 215-228.

[3] T. Zaslavsky, How colorfull is the signed graph, Disc. Math., 4 (1970) 322-325.

195

Approximation results for the linear
ordering problem on interval graphs

Alain Quilliot1 and Djamal Rebaine2

1Université Blaise Pascal, LIMOS, UMR CNRS 6158, BP 10125 Campus des Cézeaux, 63173 Aubière
(France), e.mail: alain.quilliot@isima.fr

2(corresponding author) Université du Québec à Chicoutimi, Département d’Informatique et
Mathématique, Saguenay (Canada), e.mail: djamal rebaine@uqac.ca

We discuss in this study results on the linear ordering problem. We first present a
new lower bound, and show that it can be achieved by a simple linear algorithm
on unit interval graphs. Then we propose a heuristic algorithm on interval graphs
and undertake its worst case analysis.
Keywords: Approximation algorithm, interval graphs, linear ordering, worst-case
analysis.

1 Introduction

Let G = (X,E) be a non-oriented graph where X and E denote the set of vertices and edges,
respectively. The linear ordering problem for G consists of finding a one to one mapping σ
from X to {1, . . . , |X|} such that

∑
(x,y)∈E |σ(y)− σ(x)| is minimized.

The corresponding decision linear ordering problem was first shown to be NP-complete for
arbitrary graphs [4]. It was also shown later to remain NP-complete even for some restricted
classes of graphs such as interval graphs [2], and bipartite graphs [4]. Polynomial time algo-
rithms were also developed for other restricted graph classes such as trees [1], and unit interval
graphs [3].

In what follows, we propose through a reformulation of the problem a new lower bound.
Next, we focus on interval graphs. We first solve in a very simple way the case of unit interval
graphs, then we present approximation results for a polynomial time heuristic algorithm.

2 Preliminaries

2.1 Definitions and notation

We present in this section definitions and notation on graphs, sets, and linear ordering prob-
lems.

Definition 1. Let G = (X,E) be a simple graph. If A ⊂ X, then GA is the subgraph induced
by A from G. If x ∈ X, then ΓG(x) = {y ∈ X | (x, y) ∈ E}. A triangle is a clique with
three nodes, and an anti-edge is a pair (x, y), x 6= y, such that (x, y) /∈ E. A Fork with root
x is a triple {x, y, z} such that (x, y) and (x, z) are in E and (y, z) is an anti-edge of G, and

197

an Anti-Fork with root z is a triple {x, y, z} such that (x, y) is in E, and (x, z) and (y, z) are
anti-edges of G.

Definition 2. A graph G = (X,E) is an interval graph if it can be viewed as the intersection
graph of a set of closed intervals of the real line. If G is such a graph, we may assume that
X is a closed interval family, and, for any x ∈ X, denote by o(x) and d(x) the endpoints of
interval x = [o(x), d(x)]. It is always possible to do in such a way that all values o(x), d(x),
x ∈ X, are disjoint. Then, we set i) x ⊂ y if o(x) < o(y) and d(y) < d(x), ii) x << y if
d(x) < o(x), and x Ov y if o(x) < o(y) < d(x) < d(y).
G is a unit interval graph if the related closed interval subset X may be chosen in a way that

no couple (x, y) of E exists such that x ⊂ y.
A fork {x, y, z} is a strong fork if at least one interval t among {y, z} is such that t ⊂ x.

Definition 3. A linear ordering of a set X is a binary order relation σ (non reflexive and
transitive) such that, for any (x, y) in X, x 6= y, either (x σ y) or (y σ x). In case X is
an interval family with distinct endpoints, we denote by σ-can the canonical linear ordering
defined as follows: x σ-can y if, and only if, o(x) < o(y). Finally, a linear ordering σ is right
if it is compatible with Ov and << orderings.

2.2 Reformulation

We introduce here another way of formulating the linear ordering problem. Doing so makes it
possible to use some counting arguments in the derivation of lower bounds and approximation
results.

Given are a graph G = (X,E) and a linear ordering σ of X. For any edge e = (x, y)
of E we set BE(e, z, σ) = 1 if (x σ z σ y) or (y σ z σ x), and BE(e, z, σ) = 0 otherwise.
Value BE(e, z, σ) is called the elementary break value of e by node z according to σ. The
resolution of the Linear Ordering Problem is then equivalent to the problem of computing a
linear ordering σ that minimizes BG(G, σ) =

∑
e=(x,y)∈E

∑
z∈X BE(e, z, σ), the global break

of graph G according to σ. We denote by OPB(G) = InfσB(e, σ) the optimal global break
value.

3 A general lower bound

The following lower bound is derived from the idea that computing a good linear linear ordering
σ of the vertices of a given graph G(X,E) is equivalent to the problem of deciding for every
vertex x ∈ X which vertices of Γg(x) are located before and after x according to σ. To handle
this problem, we need to solve the following Bi-Partition problem:

Let H = (Z,F) be a simple graph. For any partition Z = A ∪E B we denote by VH(A,B)
the number of anti-edges of H included either in A or B. Solving the Bi-Partition problem
corresponds to the computation of N(H) = Inf(A,B),Z=A∪EBVH(A,B).

Now, if Tr(G) denotes the number of triangles of G = (X,E), and, for x ∈ X, N∗G(x)
represents N(Γ(x)), then the following result holds.

Theorem 4. For any graph G = (X,E), we have that OPB(G) ≥ Tr(G) +
∑

xN
∗
G(x).

198

4 The case of interval graphs

In the case of unit interval graphs, we derive from Theorem 4 in a straightforward way the
following result.

Theorem 5. If G = (X,E) is a unit interval graph then σ-can is an optimal solution for the
linear ordering problem.

For general interval graphs, it is easy to check that an optimal linear ordering may not be
right. Still, experiments show that best linear orderings are most often right.

Lemma 6. If the linear ordering σ is right, then BG(G, σ) = Tr(G) + SFk(G, σ), where
SFk(G, σ) is the number of Strong Forks (x, y, z) such that (x σ y and x σ z) or (y σ x and
z σ x).

Lemma 6 makes it possible to design algorithms that construct a linear ordering σ by locally
distributing the vertices of ΓG(x) before and after x according to σ, that is by performing
a local resolution of the Bi-Partition problem. Ensuring compatibility of this process means
extending Bi-Partition as follows. Given are a graph H = (Z,F) and a partial ordering σ of
Z. A subset Y ⊂ Z is a

• Left-Section if for any x and y such that x ∈ Y , and y σ x, we also have y ∈ Y .

• Right-Section if for any x and y such that y ∈ Y , and y σ x, we also have x ∈ Y .

Given two disjoint subsets A and B of Z, such that A is a Left-Section and B is a Right-
Section, the Extended Bi-Partition problem BIPEXT (H,A,B, σ) aims to compute a partition
Z = A∗ ∪E B∗ such that

• A∗ contains A and is a Left-Section.

• B∗ contains B and is a Right-Section.

• VH(A∗, B∗) is at its minimum.

• A∗ is maximal for the inclusion order, with the above conditions being satisfied.

Let us note that if σ is linear, then this problem is clearly polynomially solvable.
In any case, from the above considerations, we may derive the following algorithm, which

builds σ by iteratively distributing in an ad-hoc way the vertices of ΓG(x) before and after x
according to σ, while processing vertices x according to the partial ordering ⊂. In the following,
we define Dom(x) = {y | x ⊂ y}. Note that the result σ-bal of this algorithm is provided by
σ.

Balancing Algorithm - For any x ∈ X, Prof(x) is the maximal length of chain x = x1 ⊂
· · · ⊂ xk.

- Initialize the partial ordering σ by setting that x σ y if x Ov y or x << y;
- For i = 1 to (Prof-Max = maxx∈X Prof(x) - 1) do {

- For x ∈ X such that Prof(x) = i do {
Z = {y ∈ X | (x, y) ∈ E, x 6= Dom(y)};
A = {y ∈ X | y σ x}; B = {y ∈ X | x σ y};
Solve BIPEX(Z,A,B, σ) and derive A∗ = A∗(x), B∗ = B∗(x); (I1)
} // end of the inner For

199

- For any pair (y, z) ∈ X, not comparable for σ, set y σ z if i), ii) or iii) below is satisfied:
i. There exists x such that Prof(x)= i, y ∈ A∗(x), z ∈ B∗(x).
ii. Prof(y)= i, z ∈ B∗(y).
iii. Prof(z)= i, y ∈ A∗(z).

} // end of For

Theorem 7. The Balancing Algorithm generates a relation σ-bal which is a right linear or-
dering with BG(G, σ-bal) not bigger than BG(G, σ-can).

Processing the above (I1) generates a complication as there is no known efficient algorithm
for it. Still, it is possible to solve it in a heuristic way through the polynomial descent process
LS-BIPEXT. This process improves iteratively the A∗ ∪E B∗ by switching a well computed
Right-Section C of A∗ into B∗ or a well computed Left-Section D of B∗ into A∗. We call
LS-Balancing the resulting version of the Balancing Algorithm.

Theorem 8. The LS-Balancing Algorithm generates, in polynomial time, a right linear order-
ing σ-LS-bal such that OPB(G) ≤ BG(G, σ-bal) ≤ BG(G, σ-LS-bal) ≤ BG(G, σ-can).

If Prof-Max = maxx∈XProf(x)−1 = 2, we set, for x ∈ X, Strong(x) to be the number of
Strong Forks with root x, k(x) the maximal cardinality of a clique of ΓG(x), and n(x) the
cardinality of ΓG(x)|.

Theorem 9. Let G = (X,E) be a graph such that Prof-Max = 2. If, for any x ∈ X, Prof(x)
= 1, the optimal value of the related Bi-Partition and BIPEXT instances are the same, then
OPB(G) = BG(G, σ-bal) = BG(G, σ-LS-bal). In any case, we have

- BG(G, σ-bal) − Tr(G) ≤ Strong/2.

- BG(G, σ-bal) − OPB(G)

≤
∑

x|Prof(x)=1

(
Strong(x)− ((n(x)− 2k(x))2 + (n(x) + 2k(x))/2)

)
/2.

References

[1] Chung FRK. (1984): On optimal linear arrangements of trees, Comp.& Maths. with appl.
vol. 10, pp. 43-60.

[2] Cohen J., Fomin F., Heggernes P., Kratsch D., Kucherov G. (2006): Optimal Linear Ar-
rangement of Interval Graphs, proceedings MFCS’06, pp. 267-279, Springer-Verlag Berlin,
Heidelberg.

[3] Corneil DG., Kim H., Natarajan S., Olariu S., Sprague AP. (1995): A simple linear time
algorithm of unit interval graphs, Inf. Proc. Letters, vol. 55, pp. 99-104.

[4] Garey MR., Johnson DS (1979): Computers and intractability: A guide to the theory of
NP-Completeness, Computer Press.

200

Hazmat transportation problem: instance
size reduction through centrality erosion

Fabio Roda1

1LIX, École Polytechnique, F-91128 Palaiseau, France

1 Introduction

The Hazardous Material (Hazmat) Transportation Problem concerns the transportation of
dangerous material from one or many production points to one or many garbage dumps,
crossing different areas and it deals with the search of optimal cost and risk. This problem
is well addressed in literature. We have considered, in a previous work [4], a particular type
of constraint, namely equity. We have studied how a transportation system can ensure safe
disposal of hazardous waste in such a way that the risk of potential catastrophic accidents is
equitable over the population of the interested area. The search of equity is a goal that is
not easy to formalize. The main contribution of our work was a formal formulation of two
definitions of equity and their integration in a mathematical programming (MP) model. The
first is a form of straightforward egalitarianism, as it asks for similar values of risk for all
the interested areas (risk sharing). The second one, more sophisticated, admits an unequal
distribution of available resources if this can help the most disadvantaged member of a group
(Rawls’s principle). We perform a series of tests to establish if our models can be utilized with
realistic instances of our problem. We observe CPU time in function of the instance size. In
particular, we use the AMPL modelling environment and the CPLEX 12.2 solver running with
its default configuration on a single 2.4 GHz Intel Xeon CPU with 8GB RAM. Transportation
systems, and in particular, road networks can be represented by means of graphs. We generate
instances randomly, considering five parameters: the number of the vertices of the network
(cardinality of vertex set), the probability that an arc exist (graph density), the maximum
capacity on arcs, the number of commodities and the number of zones. Tables 1 and 2 show the
result with increasing cardinality (till to medium size instances). Rows have to be considered
by couples: one row shows the outcome considering equity constraints and the following one
without equity constraints.
Tests show that our approach is practicable. Nevertheless, when the instance graphs sizes

and densities grow, the solution of our MP formulation gets harder or even impossible. Thus, in
this work, we focus on a method to reduce the size of the graphs preserving their fundamental
features (in this context), in order to look for approximated solutions.

2 Graph reduction through centrality erosion

The basic idea is to establish a ranking among vertices. Once vertices are classified, a smaller
graph can be obtained by removing the least relevant vertices.

201

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total damage

1
10 0.5 10 3 4 yes 0.025996 866.045
10 0.5 10 3 4 no 0.027995 677.997

2
20 0.5 10 3 4 yes 0.314952 383.153
20 0.5 10 3 4 no 0.317951 313.265

3
30 0.5 10 3 4 yes 3.34749 400.658
30 0.5 10 3 4 no 3.35249 245.669

4
40 0.5 10 3 4 yes 16.6485 289.919
40 0.5 10 3 4 no 16.6565 246.897

5
50 0.5 10 3 4 yes 57.9702 1098.87
50 0.5 10 3 4 no 57.9992 1062.44

Table 1: CPU time and total damage for equity as risk sharing, with increasing cardinality.

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total damage

1
10 0.5 10 3 4 yes 0.004999 728.432
10 0.5 10 3 4 no 0.005999 677.997

2
20 0.5 10 3 4 yes 0.004999 313.265
20 0.5 10 3 4 no 0.005999 313.265

3
30 0.5 10 3 4 yes 0.004999 327.509
30 0.5 10 3 4 no 0.008998 245.669

4
40 0.5 10 3 4 yes 0.011998 250.84
40 0.5 10 3 4 no 0.016997 246.897

5
50 0.5 10 3 4 yes 0.033994 1381.43
50 0.5 10 3 4 no 0.045993 1062.44

Table 2: CPU time and total damage for equity as Rawls’ principle, with an increasing
cardinality.

There are several metrics that can be used to calculate the importance of a vertex in a
graph. In particular, sociology has studied this matter deeply, due to its interest for social
networks, and has proposed many measures. The metric we use in this work is betweenness
centrality that considers how often a vertex is along the shortest path between two other
vertices. Anthonisse’s work [1] and Freeman’s work [3] are seminal. We refer to them as
“traditional” approach. Nevertheless, we consider a more recent work from Brandes [2] (on
which this section is based). We introduce below, more formally, betweenness centrality and
some other common measures.
Classically, given a graph G, the distance between vertices s (source) and t (target) is the

minimum length of any path connecting s and t, and we denote it with dG(s, t). We call σst the
number of the shortest paths from vertex s to vertex t and σst(v) the number of shortest paths

from vertex s to vertex t that pass through v. We call δst(v) =
σst(v)
σst

the pair-dependency of a
pair (s, t) ∈ V on an intermediary v ∈ V .

• Closeness centrality (Sabidussi, 1966)

CC(v) =
1∑

t∈V dG(v, t)
(1)

202

• Graph centrality (Hage and Harary, 1995)

CG(v) =
1

maxt∈V dG(v, t)
(2)

• Stress centrality (Shimbel, 1953)

CS(v) =
∑

s 6=v 6=t∈V
σst(v) (3)

• Betweenness centrality (Freeman, 1977; Anthonisse, 1971)

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(4)

In order to calculate centrality, we have to consider each combination of vertices in the
graph and to find the shortest path between them. Each vertex that is along a shortest path
gets a point. The resulting scores for each vertex in the ratio between the total number of
shortest paths from node to node and the number of paths that pass through, and represents
its betweenness centrality.
Typically, betweenness centrality is determined through a two steps procedure. First, we

compute length and number of shortest paths between all pairs of vertices, then sum all pair-
dependencies. From a computational time complexity point of view, traditional algorithms,
which are based on the Floyd-Warshall algorithm, belong to Θ(n3). Brandes introduces a
faster algorithm for betweenness centrality computation that belongs to O(nm + n2logn) [2].
We implemented it1 in order to produce a ranking of the vertices of a given instance and
applied it to instances that we can not solve directly with the method exposed in [4], due to
their size. For example, we consider the instance that corresponds to the parameters vector
(70, 0.5, 10, 3, 4), where, in particular, 70 is the cardinality of the set of vertices. Thus, we
calculate the betweenness centrality of its vertices. Figure 1 provides a graphical representation
of the instance graph and of the centrality of the vertices (which are depicted in the figure
with different color and size, depending on their centrality).
Consequently, we transform the graph corresponding to the instance (70, 0.5, 10, 3, 4) into a

new reduced one, removing the ten less central vertices and considering the graph induced by
the remaining vertices. We then solve the problem for this reduced instance, as explained above.
Table 3 and Table 4 show the outcome we obtain with the reduced instance respectively with
equity as risk sharing and equity as Rawls’s principle. The procedure enables the handling of
instances that we could not solve directly by means of the solver and, in general, speed up the
process.

1We exploit the public library GraphStream that is hosted by the University of Le Havre and has beens
initiated and maintained by members of the RI2C research team from the LITIS computer science lab,
http://graphstream-project.org/.

203

Figure 1: Graphical representation of the instance (70,0.5,10,3,4) showing the most central
nodes. Big red squares have an high betweenness centrality.

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total
damage

original
70 0.5 10 3 4 yes exit code exit code
70 0.5 10 3 4 no exit code exit code

reduced
70 0.5 10 3 4 yes 309.803 146.152
70 0.5 10 3 4 no 309.847 145.569

Table 3: CPU time and Total damage for equity as risk sharing, for reduced instance.

Test Card. Gr.d. Cap. Comm. Zones Equity cpu time Total
damage

original
70 0.5 10 3 4 yes 0.051992 145.569
70 0.5 10 3 4 no 0.081987 145.569

reduced
70 0.5 10 3 4 yes 0.044993 145.569
70 0.5 10 3 4 no 0.072988 145.569

Table 4: CPU time and Total damage for equity as Rawls’ principle, for reduced instance.

References

[1] J. Anthonisse. The rush in a directed graph. Technical Report BN9/71, Stichting Mahtem-
atisch Centrum, Amsterdam, 1971.

[2] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Soci-
ology, 25:163–177, 2001.

[3] L. Freeman. A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1):35–
41, Mar. 1977.

[4] F. Roda, P. Hansen, and L. Liberti. The price of equity in the hazmat. In L. Adacher,
M. Flamini, G. Leo, G. Nicosia, A. Pacifici, and V. Piccialli, editors, CTW, pages 235–238,
2011.

204

Parameterized And/Or Graph Solution

Uéverton dos Santos Souza1, Fábio Protti1, and Maise Dantas da Silva1

1Fluminense Federal University, Niterói, RJ, Brazil

Abstract. And/or graphs are data structures that have been used to model several
problems in computer science. An and/or graph is an acyclic digraph containing
a single source vertex, such that every vertex v has a label f(v) ∈ {and,or} and
(weighted) edges represent dependency relations between vertices: a vertex labeled
and depends on all of its out-neighbors, while a vertex labeled or depends on only
one of its out-neighbors. The NP-hard optimization problem associated with an
and/or graph G, denoted by Min-and/or, consists of finding a minimum solution
subgraph H of G, where a solution subgraph must contain the source and obey the
following rule: if an and-vertex (resp. or-vertex) is included in H then all (resp.
one) of its out-edges must also be included in H. In this paper we deal with the
natural question of parameterizing the cost of the solution subgraph. We prove that
Min-and/or is fixed-parameter tractable when asked whether there is a solution
subgraph H of cost at most k, where the cost of H is the sum of the weights of its
edges.
Keywords: and/or graphs, fixed parameter tractability, NP-hardness

1 Introduction

In this paper we consider the complexity of a problem associated with important data struc-
tures, the so-called and/or graphs. An and/or graph is an acyclic digraph containing a sin-
gle source vertex (that reaches all other vertices by directed paths), such that every vertex
v ∈ V (G) has a label f(v) ∈ {and,or}. In such digraphs, edges represent dependency rela-
tions between vertices: a vertex labeled and depends on all of its out-neighbors (conjunctive
dependency), while a vertex labeled or depends on only one of its out-neighbors (disjunctive
dependency). Figure 1 shows an example of an and/or graph, where and-vertices have an arc
around its out-edges.
And/or graphs were used for modeling problems originated in the 60’s within the domain

of Artificial Intelligence [8]. Since then, they have successfully been applied to other fields,
such as Operations Research [7], Robotics [2], Software Engineering [6] among others. In addi-
tion, and/or graphs also generalize directed hypergraphs [5]. The main optimization problem
associated with and/or graphs is formally defined below.

Min-and/or
Instance: An and/or graph G = (V,E), containing a single source vertex s, and such that
each edge e of G has an integer weight τ(e) > 0.
Goal: Determine the minimum cost of a subdigraph H = (V ′, E′) of G (solution subgraph)
satisfying the following properties:

205

• s ∈ V ′;
• if a vertex v is in V ′ and f(v)=and then every out-edge of v belongs to E′;
• if a non-sink vertex v is in V ′ and f(v)=or then exactly one out-edge of v belongs to E′.

In 1974, Sahni [9] showed that Min-and/or is NP-hard. However, when restricted to trees,
the problem can be solved in polynomial time. In [1], Adelson-Velsky showed that the problem
Min-and/or has interesting connections with real-word applications in scheduling.

1 1
4

3

1 4

5 3

23 1 1 4 3

2 2

1

(a)

Figure 1: (a) A weighted and/or graph.

Motivated by the large applicability as well as the hardness of Min-and/or, we study new
complexity aspects of such problem, from a parameterized point of view. This approach is
justified by the fact that many applications are concerned with satisfying a low cost limit. In
Section 2 we prove that Min-and/or is fixed-parameter tractable when asked whether there
is a solution subgraph H of cost at most k, where the cost of H is the sum of the weights of
its edges.

2 Fixed Parameter Tractability of MIN-AND/OR

The Parameterized Complexity Theory was proposed by Downey and Fellows [3] as a promising
alternative to deal with NP-hard problems described by the following general form: given an
object x and a nonnegative integer k, does x have some property that depends only on k
(and not on the size of x)? In parameterized complexity theory, k is fixed as the parameter,
considered to be small in comparison with the size |x| of object x. It may be of high interest
for some problems to ask whether they admit deterministic algorithms whose running times
are exponential with respect to k but polynomial with respect to |x|.
Definition 1. [4] A parameterized problem Π is fixed-parameter tractable, or FPT, if the
question “(x, k) ∈ Π?” can be decided in running time f(|k|).|x|O(1), where f is an arbitrary
function on nonnegative integers. The corresponding complexity class is called FPT.

We denote by Min-and/or(k) the parameterized version of Min-and/or which asks
whether there is a solution subgraph of cost at most k. In [10], some variants ofMin-and/or(k)
are studied, such as: Min-and/or(k, r), where every or-vertex has at most r out-edges with
the same weight; Min-and/or0(k), whose domain includes and/or graphs with zero-weight
edges; and Min-x-y(k), a natural generalization of Min-and/or(k) where every vertex vi has
a label xi-yi to mean that vi depends on xi of its yi out-neighbors. Table 1 illustrates results
in the literature for Min-and/or(k) and its variations. As we can observe, the question of
classifying the parameterized problem Min-and/or(k) was open up to now. The following
theorem closes this question, using a reduction to a problem kernel.

206

FPT W[1]-hard W[2]-hard

Min-and/or(k, r) X – –

Min-and/or(k) ? ? ?

Min-x-y(k) – X –

Min-and/or0(k) – – X

Table 1: Results on variations of Min-and/or(k)

Theorem 2.1. Min-and/or(k) is fixed-parameter tractable.

Proof. The proof is based on the following correct reduction rules, that must be applied once
in the order given below:

1. For every or-vertex, select an edge with minimum weight and remove all other out-edges.

2. Assign label and to every sink.

3. Color each edge e with a distinct color ce and set the flag of ce as the weight of e.

4. For each and-vertex vi having one or-in-neighbor with more than k out-edges do:

a) if vi has more than one and-out-neighbor, where Avi = {u1, u2, . . . , ut} is the set of
and-out-neighbors of vi, then: (i) for each vertex uj ∈ Avi create a new and-vertex
wj ; (ii) create the edges (vi, w1) and (wj , wj+1) for all j < t; (iii) assign the same
color and weight of (vi, uj) to the edge pointing to wj ; (iv) for every edge (uj , vr)
where uj ∈ Avi , create an edge (wt, vr) with the same color and weight as (uj , vr);
(v) remove all and-out-edges of vi distinct from (vi, w1).

b) if vi has only one and-out-neighbor vj and some or-out-neighbors then: (i) create
a new and-vertex w and an edge e = (vi, w) with the same color and weight as
(vi, vj); (ii) for every out-neighbor u of vj create an edge (w, u) with the same color
and weight as (vj , u); (iii) for every edge (vi, r) where r is an or-vertex, create an
edge (w, r) with the same color and weight as (vi, r); (iv) remove the out-edges of
vi distinct from (vi, w).

c) if vi has only or-out-neighbors then: (i) select an or-out-neighbor r with minimum
out-degree; (ii) for each edge (r, vj), create a new and-vertex wj and edges (vi, wj),
(wj , vj), where (wj , vj) has the same color and weight as (r, vj), and (vi, wj) has the
same color and weight as (vi, r); (iii) for each edge (vi, s) (r 6= s), create an edge
(wj , s) (for all j) with the same color and weight as (vi, s); (iv) assign label or to
vi; (v) remove all out-edges of vi pointing to or-vertices.

5. Assign label or to every and-vertex with only one out-neighbor.

6. For each or-vertex vi with more than k out-edges do: (i) create k or-vertices w1, . . . , wk;
(ii) for each edge (vi, vt) such that τ(vi, vt) = j and j ≤ k, create an edge (vi, wj)
with weight j and same color as (vi, vt); (iii) for each out-neighbor vt of vi such that
τ(vi, vt) = j, j ≤ k, and vt 6= wj , do: for each edge (vt, r) create an edge (wj , r) with
the same color and weight as (vt, r); (iv) remove every out-edge of vi not created in this
step.

7. While there are or-vertices with more than k out-neighbors at distance at most k from
s, do: repeat rules 2,3 and 4.

8. For each and-vertex vi, if the sum of weights of its out-edges is greater than k remove it.

9. For each edge e ∈ E(G), if τ(e) > k then remove it.

10. For every vertex vi, if the weight of a shortest path from s to vi is greater than k then
remove it.

207

11. If some vertex has become unreachable from s then remove it.

12. Remove every vertex which has become a sink.

13. Remove each and-vertex such that some of its out-edges have been removed.

14. Repeat rules 12 and 13 while needed.

At this point, each vertex has at most k out-neighbors and is at distance at most k from s,
therefore the graph has O(kk+1) vertices. On the other hand, the graph may contain a large
number of edges due to the existence of parallel edges created by previous rules. Say that two
colors assigned to the same subset of edges (by disregarding parallelism of edges) are in the
same group of colors. Since the graph has O(kk+1) vertices, the number of distinct groups of
colors is bounded by a function of k.

15. For each group of colors, select a color with minimum flag and remove all edges (v, w)
colored with another color of this group such that v is an or-vertex

16. As parallel edges and edges with the same color have been created by rules 4,5 and 6,
apply successively rules 4, 5, 6 reversibly until the graph has no parallel edges and only
one edge per color.

After applying the rules, the final graph has size bounded by a function of k. Only vertices
and edges redundant or not belonging to a solution subgraph of cost at most k have been
removed, and a solution subgraph of cost k in this graph implies a solution subgraph of cost
k in the original graph. Thus, the above reduction rules obtain a kernel to the problem, i.e.,
Min-and/or(k) is fixed-parameter tractable. �

References

[1] Adelson-Velsky, G. M., Gelbukh, A. F., Levner, E., A fast scheduling algorithm in
AND-OR graphs, Topics in Applied and Theoretical Mathematics and Computer Science,
WSEAS Press, p. 170-175, 2001.

[2] Cao, T., Sanderson, A. C., And/or net representation for robotic task sequence planning,
IEEE Trans. Systems Man Cybernet, Part C: Applications and Reviews, v. 28, p. 204-218,
1998.

[3] Downey, R., Fellows, M., Parameterized Complexity, Springer-Verlag, 1999.

[4] Flum, J., Grohe, M., Parameterized Complexity Theory, Springer, 2006.

[5] Gallo, G., Longo, G., Nguyen, S., Pallottino, S., Directed hypergraphs and applications,
Discrete Applied Mathematics, v. 42, p. 177-201, 1993.

[6] Medeiros, R. P., Souza, U. S., Protti, F., Murta, L. G. P., Optimal Variability Selection
in Product Line Engineering, Proc. of the 24th International Conference on Software
Engineering and Knowledge Engineering - SEKE 2012.

[7] Morabito, R., Pureza, V., A heuristic approach based on dynamic programming and
and/or-graph search for the constrained two-dimensional guillotine cutting problem, An-
nals of Operations Research, v. 179, p. 297-315, 2010.

[8] Nilsson, N. J., Problem-reduction representations, in Dojny, R. F. and Eakins, M., editors,
Problem Solving Methods in Artificial Intelligence, McGraw-Hill, 1971.

[9] Sahni, S., Computationally related problems, SIAM Journal on Computing, v. 3, n. 4, p.
262-279, 1974.

[10] Souza, U. S., Protti, F., Dantas da Silva, M., Revisiting the Complexity of And/Or Graph
Solution, arXiv:1203.3249v1 [cs.CC], March 2012.

208

Finding the Colors of the Secret in
Mastermind

Thatchaphol Saranurak1

1Saarland University

In the Mastermind game with n positions and k colors, a secret z ∈ [k]n has to
be found. We can only repeatedly ask queries x ∈ [k]n and learn eq(x, z) = |{i ∈
[n] | zi = xi}| (number of black pegs) and π(x, z) = maxπ∈Sn |{i ∈ [n] | zi = xπ(i)}|
(total number of black and white pegs). The aim is to use as few queries as possible.

When only black pegs are used, the minimum number of queries is Θ(n log k
logn) for

k ≤ n1−ε, ε > 0 constant. For n/ logO(1) n ≤ k ≤ n, there is still a gap between
O(n log logn) and Ω(n) according to the recent result [2] from SODA 2013.

Let C∗ ⊆ [k] be the set of colors in z, and c∗ = |C∗|. In this paper, we show that
when the information from white pegs is also used, the parameter which captures
the complexity of the problem is actually c∗ rather than k. Namely, if c∗ ≤ n1−ε,
we have a tight bound, and if n/ logO(1) n ≤ c∗ ≤ n there is a same kind of gap
given that k ≤ n2.

To show this, we devise a new algorithm for identifying C∗ using information from
π(·) only. The previous algorithm is randomized and asks O(k/n + c∗ log log c∗ +
n) queries. Our new algorithm is deterministic and asks O(k/n + c∗ log log c∗ +

c∗ log(n/c
∗)

log c∗) queries, which as fast as the previous algorithm for all c∗.

1 Introduction

In Mastermind game with n positions and k colors, a secret z ∈ [k]n has to be found. We
can only repeatedly ask queries x ∈ [k]n and learn eq(x, z) = |{i ∈ [n] | zi = xi}| (number of
black pegs) and π(x, z) = maxπ∈Sn |{i ∈ [n] | zi = xπ(i)}| (total number of black and white
pegs). Let b(n, k) be the minimum numbers of queries for identifying z when we only have
access to eq(·), in other words, we use only information from black pegs. Let bw(n, k) be the
same quantity, but when we have access to both eq(·) and π(·), in other words, we also use the
information from white pegs.

There is a sequence of papers proving the bounds for b(n, k), which are discussed in [2].
There are tight bounds of b(n, k) = Θ(n log k

logn) when k ≤ n1−ε, ε > 0 constant, and b(n, k) =

Θ(k+b(n, n)) when k > n. But if n/ logO(1) n ≤ k ≤ n, there is still a gap betweenO(n log log n)
and Ω(n).

For the complexity of bw(n, k), it is shown in [2] that

bw(n, k) =

{
Θ(b(n, k)), if k ≤ n
Θ(k/n+ b(n, n)), if k > n.

209

Let C∗ ⊆ [k] be the set of colors in z, and c∗ = |C∗|. Note that c∗ ≤ min{n, k}. In this
paper, we prove the more elaborated bound.

Theorem 1.1.

bw(n, k) =

{
Θ(b(n, c∗)), if k ≤ n
Θ(k/n+ b(n, c∗)), if k > n.

This means that the parameter which captures the complexity of bw(n, k) is actually c∗

rather than k. Namely, if c∗ ≤ n1−ε, ε > 0, then we have a tight bound because the bound for
b(n, c∗) is tight. If n/ logO(1) n ≤ c∗ ≤ n, there is still a gap between O(n log logn) and Ω(n)
given that k ≤ n2.

This bound tells us that the hard instances of the Mastermind game with black and white
pegs are those with c∗ = min{n, k}, and therefore if c∗ � k, then white pegs help us identify
the secret z asymptotically faster than using only black pegs. For example when c∗ = 2,
bw(n, n) = O(n/ log n), but b(n, n) = Ω(n).

1.1 Overview of the Technique

To show these bounds, we devise a new algorithm proving the new upper bound for w(n, k)
where w(n, k) is defined to be the minimum numbers of queries for identifying the colors C∗

when we have access to only π(·). The previous algorithm in [2] is randomized and reduces
the problem to identify the secret itself using only the information from black pegs again. It
gives us the bound w(n, k) = O(k/n+ c∗ + b(c∗, n)) in expectation. The current best bounds
of b(n, k) are = O(n log logn + k) and Ω(n + k) when k ≥ n. Hence, the algorithm asks
O(k/n+ c∗ log log c∗ + n) and Ω(k/n+ c∗ + n) queries.

Our new algorithm for identifying C∗ is deterministic, and gives the stronger bound of
w(n, k) for all c∗.

Theorem 1.2. For Mastermind with n positions, k colors, and only access to π(·), given that
the secret z contains the colors C∗, where |C∗| = c∗, then we can deterministically identify C∗

using O(c∗ + c∗ log(n/c
∗)

log c∗)) queries if k ≤ n, and O(k/n + c∗ log log c∗ + c∗ log(n/c
∗)

log c∗)) queries if
k > n. In other words,

w(n, k) =

{
O(c∗ + c∗ log(n/c

∗)
log c∗), if k ≤ n

O(k/n+ c∗ log log c∗ + c∗ log(n/c
∗)

log c∗), if k > n

Our approach for proving the upper bound for w(n, k) is to reduce some sub-problem to a
coin weighing problem similarly to the approach for proving the upper bound of b(n, k) in [2].

We show our new algorithm in Section 2, and prove the bound of bw(n, k) in Section 3.

2 The Algorithm for Finding the Colors of the Secret

In this section, we give an algorithm for identifying C∗ using information from π(·) only. We
need the following tools.

210

Coin Weighing Problem: We are given n coins with weight zero, d out of which are fake
with weight one. We can weigh any subsets of coins and then learn the sum of the weight of
the selected coins. The following two theorems will be used in our proofs.

Theorem 2.1. [1] There is a deterministic polynomial time algorithm for identifying d fake

coins using O(d log(n/d)log d) weighing.

The problem can be generalized to the case when there each coin may have different weight.

Theorem 2.2. [1] Given that the sum of the weight of all coins is O(n), there is a deterministic
polynomial time algorithm for identifying the weight of each coin using O(n

logn) weighing.

Now we show our algorithm, which works in 4 phases. Here, by the “answer” of x we always
mean π(x, z). Our algorithm works in 4 phases.

1. Find a dummy color c ∈ [k]\C∗. This can be done easily by asking monochromatic code
queries x at most c∗ + 1 times until we find one with π(x, z) = 0.

2. Learn c∗ and find the first candidate set C. We ask roughly k/n queries containing all
colors. This can be done by repeatedly asking queries containing distinct colors (the last
query contains the remaining colors and dummy color). From this, we learn c∗ as the sum
of all answers. Let C be the set of all colors contained in all queries x with π(x, z) > 0.
It is clear that C∗ ⊆ C and |C| ≤ c∗ · n.

3. Reduce the size of the candidate set C until |C| ≤ n. This is the main phase. We will
show in details how to achieve this using O(c∗ log log c∗) queries.

4. Find C∗ from C where |C| ≤ n. We reduce the problem to coin weighing problem. We
assign the “weight” one to any color c ∈ C∗, and zero to c /∈ C∗. We can simulate
weighing of any subset D ⊂ C by asking x whose first |D| positions contains the colors
in D, and the remaining part contains the dummy color. We have that the weight of D
is π(x, z). By Theorem 2.1, we can identify C∗ within O(c

∗ log(n/c∗)
log c∗) queries.

Thus, w(n, k) = O(c∗+1+k/n+c∗ log log c∗+ c∗ log(n/c∗)
log c∗) = O(k/n+c∗ log log c∗+c∗ log(n/c

∗)
log c∗)).

Note that when k ≤ n, we even have w(n, k) = O(c∗ + c∗ log(n/c
∗)

log c∗)). Because we can only do
Phases 1 and 4, given that there is dummy color, in other words, c∗ < k. If c∗ = k, then we
are done after the first c∗ monochromatic queries. Therefore, this gives us Theorem 1.2.

Now we show how to do Phase 3.

Lemma 2.3. Given a candidate set C ⊇ C∗ of size at most k′n, we can find the new candidate
set C ′ of size at most 3k′

4 n in O(c∗
log(4c∗/k′)) queries.

Proof. First, we ask k′ queries containing all colors in C like in Phase 2. Observe that there
are at least k′

2 queries with the answer at most 2c∗
k′ , otherwise the sum of all answers is more

than c∗, which is a contradiction. Let Q be the set of such queries.
For each x ∈ Q, we partition the positions of x into 4c∗

k′ blocks of equal size. Since π(x, z) ≤
2c∗
k′ , but there are 4c∗

k′ blocks, at least half of all blocks contribute nothing to the answer. We
call these blocks 0-blocks. We will identify the 0-blocks (which contain only unused colors) to
reduce the size of the candidate set C. To do so, we again reduce the problem to coin weighing
problem.

211

We view each block as a coin. The weight of the block is the contribution of the block to
the answer π(x, z). Hence, the weight of 0-blocks is 0. By Theorem 2.2, we can identify all

0-blocks of x in O(c∗/k′

log(4c∗/k′)) queries. So at least half of all colors in x are eliminated.

We do coin-weighing for each x ∈ Q. So there are O(k′ · c∗/k′

log(4c∗/k′)) = O(c∗
log(4c∗/k′)) queries

in total. To sum, for at least half of all queries, we eliminate at least half of all colors in such
queries. So at least 1

4 -fraction of the colors are eliminated.

Lemma 2.4. Given the candidate set C of size at most c∗n, we can find the new candidate
set C ′ of size at most n in O(c∗ log log c∗) queries.

Proof. By repeating the algorithm in Lemma 2.3 for constant number of times, we can actually
half the size of C in the same query complexity.

Now we just apply Lemma 2.3 repeatedly. We have that the total query complexity is

O(

log c∗∑

i=0

c∗

log(4c∗
c∗/2i)

) = O(c∗
log c∗∑

i=0

1

log(2i+2)
) = O(c∗

log c∗∑

i=0

1

i+ 2
) = O(c∗ log log c∗).

3 White Pegs Help when the Secret is not Colorful

In this section, we prove our bounds of bw(n, k). The simple main idea is bw(n, k) ≤ w(n, k) +
b(n, c∗) because one approach for identify z is to first identify C∗ using only π(·), and then
identify z using only eq(·). With a simple argument, we have

Proposition 3.1. b(n, k) = Ω(k + n log k
logn) = Ω(k + n/ log n) for any k ≥ 2.

Proof of Theorem 1.1. When k ≤ n, by Theorem 1.2, w(n, k) = O(c∗ + c∗ log(n/c
∗)

log c∗) = O(c∗ +
n/ log n). Since b(n, c∗) = Ω(c∗ + n/ log n) by Proposition 3.1, we have bw(n, k) = O(b(n, c∗)).

When k > n, there are two cases. If c∗ ≤ n/ log2 n, we have w(n, k) = O(k/n+c∗ log log c∗+

c∗ log(n/c
∗)

log c∗) by Theorem 1.2. Since both c∗ log log c∗ and c∗ log(n/c
∗)

log c∗ are in O(n/ log n), but
b(n, c∗) = Ω(n/ log n) by Proposition 3.1, we are done.

If n/ log2 n < c∗ ≤ n, we use the bound from [2]: w(n, k) = O(k/n + c∗ + b(c∗, n)). Note
that b(c∗, n) ≤ n+ b(c∗, c∗) because we can trivially ask the monochromatic queries n times to
identify the colors in the secret. So w(n, k) = O(k/n+ n+ b(c∗, c∗)). Since b(n, c∗) = Ω(n) by
Proposition 3.1 and b(n, c∗) ≥ b(c∗, c∗), we are done.

We omit the straight-forward lower bounds because of space.

References

[1] Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale.
In COLT, 2009.

[2] Benjamin Doerr, Reto Spöhel, Henning Thomas, and Carola Winzen. Playing mastermind
with many colors. In Proc. of ACM-SIAM Symposium on Discrete Algorithms, pages 695–
704, 2013.

212

1-factors and circuits of cubic graphs

Eckhard Steffen1

1Paderborn University
Paderborn Institute for Advanced Studies in Computer Science and Engineering

Zukunftsmeile 1, 33102 Paderborn , (es@upb.de)

1 Introduction and Motivation

We consider cubic graphs G with vertex set V (G) and edge set E(G). If a cubic graph has two
disjoint 1-factors, then it is 3-edge-colorable, and its edge set can be covered by three 1-factors.
Hence, if the chromatic index of G is 4, then any two 1-factors of G intersect. For k ≥ 1, let
mk(G) = max{|⋃k

i=1Mi| : M1, . . . ,Mk are 1-factors of G}, and µk(G) = |E(G)| −mk(G). We
consider 1-factor-covers of cubic graphs.

It is an open problem whether there exists an integer k such that µk(G) = 0 for every
bridgeless cubic graph. Berge (see [8]) conjectured that µ5(G) = 0 for every bridgeless cubic
graph. In [5] it is shown that Berge’s conjecture is equivalent to the following conjecture.

Conjecture 1 (Berge-Fulkerson Conjecture [3]). Every bridgeless cubic graph G has six 1-
factors such that every edge of G is contained in precisely two of them.

The following conjecture of Fan and Raspaud is true if the Berge-Fulkerson Conjecture is
true.

Conjecture 2 (Conjecture of Fan and Raspaud [2]). Every bridgeless cubic graph has three
1-factors M1, M2, M3 such that M1 ∩M2 ∩M3 = ∅.

Since the complement of a 1-factor of a cubic graph is a 2-factor, covers with 1-factors are
closely related to cycle covers. A cycle cover of a graph G is a set C of cycles such that
every edge of G is contained in at least one cycle. It is a double cycle cover if every edge is
contained in precisely two cycles, and a k-(double) cycle cover (k ≥ 1) if C consists of at most
k cycles. The length of a cycle cover C is the number of edges of C. Celmins and Preissmann
independently formulated the 5-Cycle-Double-Cover-Conjecture which is a stronger version of
the Cycle-Double-Conjecture of Seymour and Szekeres (see [8]).

Conjecture 3 (see [8]). Every bridgeless graph has a 5-cycle double cover.

This conjecture is equivalent to its restriction to cubic graphs. In this case a cycle is a 2-
regular graph whose components are circuits. A 3-edge-colorable cubic graph G has a 2-cycle
cover of length 4

3 |E(G)|. Alon and Tarsi stated the following conjecture.

Conjecture 4 ([1]). Every bridgeless graph G has a cycle cover of length at most 7
5 |E(G)|.

213

It is more or less obvious that all the aformentioned conjectures are true for cubic graphs
which are 3-edge-colorable. Hence we concentrate our studies on bridgeless cubic graphs G
with µ2(G), µ3(G) > 0.

Another well known conjecture which is equivalent to its restriction to cubic graphs is Tuttes
5-flow conjecture.

Conjecture 5 (5-flow conjecture [7]). Every bridgeless graph has a nowhere-zero 5-flow.

2 Cores of cubic graphs

We introduce the notion of cores of cubic graphs and prove serveral partial results for the above
mentioned conjectures.

If X ⊆ E(G), then G[X] denotes the graph whose vertex set consists of all vertices of edges
of X and whose edge set is X.

Let G be a cubic graph that has three 1-factors M1, M2 and M3. The set of the edges which
are in more than one 1-factor is denoted by M, and the set of edges which are not contained
in any of the three 1-factors by U ; that is, M =

⋃
i 6=j(Mi ∩Mj) and U = E(G) − ⋃3

i=1Mi.
Clearly,M and U are disjoint. We consider the graph G[M∪U] which is induced by the union
of M and U . If M1 = M2 = M3, then G = G[M∪U]. Hence we ask the three 1-factors to be
pairwise different in the following definition.

Let M1, M2 and M3 be three pairwise different 1-factors of a cubic graph G, k ≥ 0, and
|E(G) −⋃3

i=1Mi| = k. The k-core of G with respect to M1, M2, and M3 is the subgraph Gc

of G which is induced by M∪U ; that is, Gc = G[M∪U]. If the value of k is irrelevant, then
we say that Gc is a core of G. We first prove some basic properties of cores.

Theorem 6. Let Gc be a core of a cubic graph G with respect to three 1-factors M1, M2 and
M3, and let Kc be a component of Gc. Then M is a 1-factor of Gc, and
1) Kc is either an even circuit or it is a subdivision of a cubic multigraph K, and
2) if Kc is a subdivision of a cubic multigraph K, then E(Kc) ∩

⋂3
i=1Mi is a 1-factor of K.

Theorem 7. Let k ≥ 0, and Gc be a k-core of a cubic graph G with respect to three 1-factors
M1, M2 and M3. Then,
1) if k < 3, then G is 3-edge-colorable.
2) |V (Gc)| = 2k − 2|⋂3

i=1Mi|, and |E(Gc)| = 2k − |⋂3
i=1Mi|.

3) girth(Gc) ≤ 2k.
4) Gc has at most 2k/girth(Gc) components.

3 Main results

Conjecture of Fan and Raspaud

If a core Gc of a cubic graph is a cycle, then we say that Gc is a cyclic core. A cubic graph G
has three 1-factors M1, M2, M3 such that M1 ∩M2 ∩M3 = ∅ if and only if G has a cyclic core.
Hence, Conjecture 2 can be formulated as a conjecture on cores in bridgeless cubic graphs.

Conjecture 8 (Conjecture 2). Every bridgeless cubic graph has a cyclic core.

Theorem 9. Let k ≥ 0, and G be a cubic graph with µ3(G) = k. If girth(G) ≥ k (> k), then
every k-core of G is bipartite (cyclic).

214

Theorem 10. Let G be a simple bridgeless cubic graph. If µ3(G) ≤ 6, then G has a cyclic
core. In particular, if G is trianglefree and µ3(G) ≤ 5, then every µ3(G)-core is cyclic.

Berge-Fulkerson Conjecture

Theorem 11. Let G be a bridgeless cubic graph which has no non-trivial 3-edge-cut. If
µ3(G) ≤ 4, then G has a Fulkerson coloring.

Short cycle covers and 5-cycle cover

Theorem 12. Let k ≥ 0, and G be a cubic graph. If G has a bridgeless k-core, then G has a
cycle cover of length at most 4

3 |E(G)|+ 2k.

Theorem 13. Let k ≥ 0, and G be a cubic graph. If G has a bipartite k-core Gc, then G has
an even 4-cycle cover of length at most 4

3 |E(G)| + 2
3k. In particular, if Gc is cyclic, then G

has an even 3-cycle cover of length at most 4
3 |E(G)|+ 2

3k.

Theorem 14. Let G be a cubic graph that has four 1-factors M1, . . . ,M4 with |E(G) −⋃4
i=1Mi| = k ≥ 0. If

⋂4
i=1Mi = ∅, then G has a 4-cycle cover of length 4

3 |E(G)|+ 4k.

Theorem 15. Let G be a cubic graph. If µ4(G) = 0, then
1) G has an even 4-cycle cover C of length 4

3 |E(G)|.
2) G has a 5-cycle double cover.

Following Zhang [8] we say that the Chinese postman problem is equivalent to the shortest
cycle cover problem, if the shortest length of a closed trail that covers all edges of G is equal
to the length of a shortest cycle cover. This is certainly true for cubic graphs G that have
a cycle cover of length 4

3 |E(G)|. Zhang asked the following question (Problem 8.11.4 in [8]):
Let h ≥ 5 and G be a 3-edge-connected, cyclically h-edge-connected graph. If the Chinese
Postman problem and the shortest cycle cover problem are equivalent for G, does G admit a
nowhere-zero 4-flow? The answer to this question is negative since for h ∈ {5, 6} there are
cyclically h-edge connected snarks with µ4(G) = 0. It is known that µ4(G) = 0 if G is a flower
snark or a Goldberg snark, see [4].

Nowhere-zero 5-flows

Let k ≥ 2 be a positive integer. A graph H has a nowhere-zero k-flow if there is an orientation
of its edges and a function φ from the edge set of H into the set of integers such that the
Kirchhoff law is satisfied at every vertex of H and 0 < |φ(e)| ≤ k − 1 for every edge e of H.

Let G be a bridgeless cubic graph. The oddness ω(G) of G is the minimum number of odd
circuits of a 2-factor of G. In [6] it is shown that if G is a cyclically k-edge connected cubic
graph and k ≥ 5

2ω(G)− 3, then G has a nowhere-zero 5-flow.
Since every 1-factor of G has a non-empty intersection with every odd edge-cut of a G it

follows that ω(G) ≤ 2µ2(G).

Theorem 16. Let G be a cyclically k-edge-connected cubic graph. If k ≥ 5µ2(G)− 3, then G
has a nowhere-zero 5-flow.

For small values of µ2(G) we prove:

Theorem 17. Let G be a cyclically 6-edge-connected cubic graph. If µ2(G) ≤ 2, then G has a
nowhere-zero 5-flow.

215

References

[1] N. Alon, M. Tarsi, Covering multigraphs by simple circuits, SIAM J. Algebraic Discrete
Methods 6 (1985) 345 - 350

[2] G. Fan, A. Raspaud, Fulkerson’s conjecture and circuit covers, J. Combin. Theory
Ser. B, 61 (1994) 133-138

[3] D. R. Fulkerson, Blocking and antiblocking pairs of polyhedra, Math. Program. 1
(1971) 168-194

[4] J.L. Fouquet, J.M. Vanherpe, On the perfect matching index of bridgeless cubic
graphs, arXiv:0904.1296v1 (2009)

[5] G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph
Theory 68 (2011), 125 - 128

[6] E. Steffen, Tutte’s 5-flow conjecture for highly cyclically connected cubic graphs, Dis-
crete Math. 310 (2010) 385–389

[7] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian
J. Math. 6 (1954) 80-91

[8] C.-Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker, Inc. New York,
Basel, Hong Kong (1997)

216

On the Generality of the Greedy Algorithm
for Solving Matroid Problems

Lara Turner1, Matthias Ehrgott2, and Horst W. Hamacher1

1Department of Mathematics, University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern,
Germany, {hamacher,turner}@mathematik.uni-kl.de

2The University of Auckland, Faculty of Engineering, Department of Engineering Science, New
Zealand , m.ehrgott@auckland.ac.nz

Dedicated to Professor Francesco Maffioli.
We are very saddened by his sudden death.

We consider a matroid M = (E,B) with ground set E, rank r, base set B ⊆ 2E and costs
c(e) ∈ R for all e ∈ E. The focus is on matroid problems with universal objective function
defined as follows.

1. Given a matroid base B ∈ B, the sorted cost vector (with respect to c and B) is defined
as

c≥(B) := (c(1)(B), . . . , c(r)(B)). (1)

Here c(i)(B), i = 1, . . . , r, is the ith-largest cost coefficient.

2. Given r universal weights λ1, . . . , λr ∈ R , the universal minimum matroid base problem
(Univ-MMBP) is

min
B∈B

fλ(B) :=
r∑

i=1

λi · c(i)(B). (2)

Univ-MMBP is a rather powerful model, since it combines the numerous combinatorial
special cases of matroids with a variety of objectives induced by specific choices of universal
weights. This includes the well-known cases of sum-objective and bottleneck-objective by
choosing in (2) λi = 1 for all i = 1, . . . , r and λ1 = 1, λi = 0 for all i = 2, . . . , r, respectively.
Other objective functions with a lot of potential for applications are the balanced (λ1 = 1, λr =
−1, λi = 0 for all i = 2, . . . , r−1), the k-sum (λ1 = . . . = λk = 1, λi = 0 for all i = k+1, . . . , r),
or the algebraic sum (λ1 = 2, λi = 1 for all i = 2, . . . , r), and many more.

The goal of this presentation is to show the potential and limits of using the well-known
Greedy algorithm and to propose some extensions thereof to solve Univ-MMBP. Among others
we show the validity and applications of the following results.

Theorem 1. 1. If all universal weight coefficients are non-negative or non-positive, then
Univ-MMBP can be solved by the Greedy-Algorithm.

217

2. If λ has minus-plus form, i.e.

λ = (−α1, . . . ,−αk, βk+1, . . . , βr) (3)

where α1, . . . , αk, βk+1, . . . , βr ∈ R+
0 with at least two universal weight coefficients αi, βj >

0 then the resulting minus-plus Univ-MMBP is solvable by at most min{mk,mr−k} ap-
plications of the Greedy Algorithm to matroids of the type M \B/B̃

3. If M is a uniform matroid, and λ has p fixed sign change universal vector form at positions
k1, . . . , kp − 1, kp, i.e.

λ = (α1, . . . , αk1−1,−βk1︸ ︷︷ ︸
(+,−)

, , αkp−1,−βkp︸ ︷︷ ︸
(+,−)

, . . . ,−βr) (4)

with non-negative αi and βj, then an optimal solution B∗ for the resulting p-fix Univ-
MMBP is obtained by at most mp many applications of the Greedy Algorithm.

The presentation is based on a paper with the same title and the same authors and the PhD
dissertation ”‘Universal Combinatorial Optimization: Matroid Bases and Shortest Paths”’ by
Lara Turner.

218

Graph Products for Faster Separation of
1-Wheel Inequalities

Sven de Vries1

1Universität Trier

Using graph products we present anO(|V |2|E|+|V |3 log |V |) separation algorithm
for the nonsimple 1-wheel inequalities (Cheng and Cunningham, 1997) of the stable
set polytope, which is faster (on the sparse instances coming from the conflict graphs
of integer programs) than the previously known O(|V |4) algorithm.

1 Introduction

Let G = (V,E) be a simple connected graph with |V | = n ≥ 2 and |E| = m. A subset of
V is called stable if it does not contain adjacent vertices of G. The incidence vector of a set
N ⊆ V is χN ∈ {0, 1}V such that χN

v = 1 if v ∈ N and otherwise χN
v = 0. The stable set

polytope of G, denoted by STAB(G), is the convex hull of incidence vectors of stable sets of
G. Some well-known valid inequalities for STAB(G) include the trivial inequalities (xv ≥ 0 for
v ∈ V), the odd cycle inequalities (

∑
v∈C xv ≤ k where C is the vertex-set of an odd cycle of

length 2k + 1), and the clique inequalities (
∑

v∈K xv ≤ 1 where K induces a clique). A clique
inequality is called edge inequality if the clique has just two vertices.

The separation problem for a class C of valid inequalities is: Given x∗ ∈ QV , does x∗ vi-
olate one of the inequalities in C? If yes, exhibit such an inequality. It is an important
subroutine of every branch-and-cut-solver for IPs. The separation problem for C = {trivial,
edge and odd-cycle inequalities} is solvable inO(nm+n2 log n). Cheng and Cunningham (1997)
describe a separation algorithm for 1-wheel inequalities in time O(n4), by solving shortest odd
walk problems in a complete graph on O(n) vertices. We improve this to O(n2m + n3 log n).
As we will show, the separation problem boils down to check whether there exists a minimum
wheel with weight below some threshold which in turn can be decided by finding a shortest
odd walk in a product graph that does preserve sparsity as it has only O(m) edges

2 1-Wheels

Cheng and Cunningham (1997) consider a wheel with (2k+1) vertices and hub h (for an exam-
ple of a wheel on 5 vertices and hub, see Fig. 1(a)) and its subdivisions 1(b). Let 1, . . . , 2k′ + 1
be the rim where the spoke ends are l1 up to l2k+1, ordered so that 1 = l1 < l2 < · · · < l2k+1.
Denote the spoke paths connecting h to some li by Pli and their subpaths that exclude both
ends by P̊li . With |P̊li | we denote the number of vertices in P̊li . Let the interior of the
spoke paths be disjoint. A 1-wheel has to fulfill additionally the condition that the cycles

219

1

34

5 2

0

(a)

7

3

4

0

56

11

1

10

9

8

2

(b)

1

9

2

3

4

0, 7

56

11, 8

10

(c)

Figure 1: From a wheel to a simple odd (11, 5)-wheel W (0; 1, 4, 5, 6, 11) to a nonsimple odd wheel
obtained by identifying vertices 0, 7 and 8, 11.

h, P̊li , li, li + 1, . . . , li+1, P̊li+1
, h are odd for i = 1, 2, . . . , 2k + 1; for a complete specification we

denote it by W (h; k′; l1, l2, . . . , l2k+1;Pl1 , Pl2 , . . . , Pl2k+1
).

Let E be the set of the li for which the paths Pli have an even number of edges, and let O
be the set of remaining spoke ends. Cheng and Cunningham (1997) show that the inequalities

kxh +
2k′+1∑

i=1

xi +
∑

i∈E
xi +

2k+1∑

i=1

x(P̊li) ≤ k′ +
|E|+∑2k+1

i=1 |P̊li |
2

(IA)

(k + 1)xh +

2k′+1∑

i=1

xi +
∑

i∈O
xi +

2k+1∑

i=1

x(P̊li) ≤ k′ +
|O|+ 1 +

∑2k+1
i=1 |P̊li |

2
(IB)

are valid and they give sufficent conditions for them to induce facets. (Here we use x(P̊) for a
walk P = v0 − · · · − vk+1 as a shorthand for

∑k
i=1 xvi .)

Proposition 2.1 (Cheng and Cunningham, 1997, Prop. 3.4). Let
∑n

i=1 aixi ≤ a0 be a valid
inequality for STAB(G) and let v1 and v2 be two nonadjacent vertices of G. If H is obtained
from G by identifying v1 and v2 to a single vertex v1,2, then (a1 + a2)x1,2 +

∑n
i=3 aixi ≤ a0 is

valid for STAB(H).

Therefore, when speaking of general or nonsimple 1-wheels we will permit the identification
of nonadjacent vertices where the sum of weights of the identified vertices is the new weight.

Lemma 2.2. For 1-wheels and IA-inequalities assumption E = ∅ is wlog. (and similar for IB).

3 Separation of I ′
A

Now assume E = ∅ for (IA) and call those simple 1-wheels W (h; k′, l1, l2, . . . , l2k+1;Pl1 , Pl2 , . . . ,
Pl2k+1

) simple odd (2k′ + 1, 2k + 1)-wheels or shorter simple odd wheels. For them lj+1 − lj is
odd for j = 1, . . . , 2k and all spoke paths are odd. The following form of (IA) results:

kxh +
2k′+1∑

i=1

xi +
2k+1∑

i=1

x(P̊li) ≤ k′ +
∑2k+1

i=1 |P̊li |
2

. (I ′A)

Because of Proposition 2.1, we focus on general (that is, possibly nonsimple) odd (2k′+1, 2k+
1)-wheels. Let ESTAB(G) := {x ∈ [0, 1]V : xu + xv ≤ 1 ∀uv ∈ E} and CSTAB(G) := {x ∈

220

ESTAB(G) : x fulfills the odd cycle inequalities} and WASTAB(G) := {x ∈ CSTAB(G) : x
fulfills all (nonsimple) I ′A-inequalities}. Consider the following four-fold of (I ′A)

2 − 2xh ≤
2k+1∑

j=1

(
−2xh +

(
|P̊lj | − 2x(P̊lj)

)
+
(
|P̊lj+1

| − 2x(P̊lj+1
)
)

+ 2

lj+1−1∑

i=lj

(1 − xi − xi+1)

)
. (1)

Call the right hand side of (1) the weight of the odd wheel with respect to x. We can prove
for given x∗, h, that in a maximally violated inequality all the spoke walks Plj are shortest odd.

Lemma 3.1. For a given graph G and x∗ ∈ ESTAB(G) fix a hub h, an odd cycle v1, v2, . . . ,
v2k′+1, and spoke ends 1 = l1 < l2 < · · · < l2k+1 ≤ 2k′ + 1. Among all odd wheels with this hub
and these spoke ends consider one (with some Plj ’s) such that (1) is most violated, that is the
right hand side is minimal. Then each Plj is a shortest odd walk from h to vlj with respect to
the edge weights (1− x∗u − x∗v) ≥ 0 (because of x∗ ∈ CSTAB(G)).

For fix x∗ ∈ ESTAB(G) let P 1
h,k and P 0

h,k be shortest odd respectively even of length ≥ 2
(having at least two edges) walks with respect to edge weights (1−x∗u−x∗v) for all k ∈ V ; if no
such P 1

h,k or P 0
h,k exists, we set |P̊ 1

h,k|− 2x(P̊ 1
h,k) = +∞ or |P̊ 0

h,k|− 2x(P̊ 0
h,k) = +∞ respectively.

Next we analyze the summand of equation (1) and let P̊ be P̊ 1. If lj+1 − lj = 1 then we
have

− 2xh + |P̊h,lj | − 2x(P̊h,lj) + |P̊h,lj+1
| − 2x(P̊h,lj+1

) + 2

lj+1−1∑

i=lj

(1− xi − xi+1)

= 2(1− xlj − xlj+1
)− 2xh + |P̊h,lj | − 2x(P̊h,lj) + |P̊h,lj+1

| − 2x(P̊h,lj+1
)

and going from spoke end lj to lj+1 costs 2(1−xlj−xlj+1
)−2xh+ |P̊h,lj |−2x(P̊h,lj)+ |P̊h,lj+1

|−
2x(P̊h,lj+1

). For x ∈ CSTAB(G) this weight is nonnegative.
Otherwise lj+1 − lj ≥ 3 :

− 2xh + |P̊h,lj | − 2x(P̊h,lj) + |P̊h,lj+1
| − 2x(P̊h,lj+1

) + 2

lj+1−1∑

i=lj

(1− xi − xi+1)

=2(1− xlj − xlj+1 − xh) + |P̊h,lj | − 2x(P̊h,lj)

+ 2

lj+1−2∑

i=lj+1

(1− xi − xi+1) + 2(1− xlj+1−1 − xlj+1
)− 0xh + |P̊h,lj+1

| − 2x(P̊h,lj+1
).

So here we would want an edge {lj , lj + 1} leaving the spoke to contribute (2 − 2xh −
2xlj − 2xlj+1) + |P̊h,lj | − 2x(P̊h,lj), the internal edges {i, i+ 1} not incident with the spokes to
contribute 2(1 − xi − xi+1), and the final edge {lj+1 − 1, lj+1} to contribute (2 − 2xlj+1−1 −
2xlj+1

) + |P̊h,lj+1
| − 2x(P̊h,lj+1

). Notice that the second and third weight are positive, if x∗

fulfills the edge inequalities, but the first weight could be negative.

1 2 3

0 5 4

The categorical product G1 ·D2 of a graph G1 and a digraph D2

is defined by V (G1 · D2) = V (G1) × V (D2) and A(G1 · D2) =
{((u1, u2), (v1, v2)) : (u1, v1) ∈ E(G1) and (u2, v2) ∈ A(D2)}. For
G = (V,E) consider the digraph D := G · F, with F depicted to the
right. We want to embed the violated-odd/even-wheel-with-hub-h-
finding-task into this graph. Interpret vertices of type V × {0, 3} as vertices that correspond

221

to spoke ends. Define for given x∗ ∈ QV and vertex h ∈ V the weighted digraph Dh := D
where the arc e = ((u, i), (v, j)) has weight:

w1
e =

2(1− x∗u − x∗v)− 2x∗h + |P̊ 1
h,u| − 2x∗(P̊ 1

h,u) + |P̊ 1
h,v| − 2x∗(P̊ 1

h,v) if {i, j} = {0, 3}
2(1− x∗u − x∗v)− 2x∗h + |P̊ 1

h,u| − 2x∗(P̊ 1
h,u) if (i, j) ∈ {(3, 4), (0, 1)}

2(1− x∗u − x∗v) + |P̊ 1
h,v| − 2x∗(P̊ 1

h,v) if (i, j) ∈ {(2, 3), (5, 0)}
2(1− x∗u − x∗v). if {i, j} ∈ {{1, 2}, {4, 5}}

Lemma 3.2. For any diwalk U = (v1, i1)− (v2, i2)−· · ·−(vq, iq) in Dh with {i1, iq} = {0, 3} 63
i2, . . . , iq−1, with q ≥ 2, and x∗ ∈ ESTAB(G) holds:

(a) q is even.
(b) w1(U) = −2x∗h + |P̊ 1

h,v1
| − 2x∗(P̊ 1

h,v1
) + 2

∑q−1
i=1 (1− x∗vi − x∗vi+1

) + |P̊ 1
h,vq
| − 2x∗(P̊ 1

h,vq
).

(c) If x∗ ∈ CSTAB(G) then w1(U) ≥ 0.
(d) If x∗ ∈ CSTAB(G) and v1 = vq, then w1(U) ≥ 2− 2x∗h.

Lemma 3.3. Every (nonsimple) odd (2k′ + 1, 2k + 1)-wheel W (h; 1 = l1 < l2 < · · · < l2k+1 ≤
2k′ + 1;P 1

l1
, P 1

l2
, . . . , P 1

l2k′+1
) of G using shortest spoke paths corresponds to a (v1, 0) (v1, 3)

diwalk U (containing at least 3 vertices with second component 0 or 3) in Dh of the same finite
weight with respect to w and x∗ ∈ CSTAB(G) and vice-versa.

Hence, to find a violated odd wheel with hub h and initial spoke end v1 we have to find a
shortest odd wheel with hub h and initial spoke end v1; if its weight is less than 2(1−x∗h) then
it is violated. Otherwise there is no violated odd wheel with hub h and initial spoke end v1.
To do shortest path problem in Dh we need:

Lemma 3.4. If x∗ ∈ CSTAB(G) and h ∈ V (G) then Dh contains no w1-negative dicycle.

To find a shortest subdivided wheel with hub h and initial spoke end v1 reduces to finding a
shortest (v1, 0) (v1, 3) diwalk encountering at least two more vertices with second component
in {0, 3} in Dh with respect to weights w1 as defined for Lemma 3.2 and comparing that length
to 2− 2x∗h. If it has only two vertices with second component in {0, 3}, then by Lemma 3.2(d)
its weight is ≥ 2− 2x∗h, hence no violated wheel with hub h and start v exists. This yields:

Corollary 3.5. Given G and x∗ ∈ CSTAB(G) then there is a violated odd wheel-inequality
with hub h starting in v iff Dh contains a (v, 0) (v, 3) diwalk shorter than 2− 2x∗h wrt. w1.

Towards the complexity of the separation one has for every hub h ∈ V first to compute the
odd P 1

lj
-walks having at least one arc each as candidates for spokes with one call to Dijkstra

in O(m + n log n) for G ·K2. By applying Johnson’s (1977) all-pairs-shortest-path algorithm
to Dh in time O(nm+n2 log n) we check whether there is a (v, 0) (v, 3) diwalk shorter than
2− 2x∗h. For n hubs we the total running time is O(n2m+ n3 log n).

Theorem 3.6. The separation problem given x∗ ∈ CSTAB(G) for WASTAB(G) (and similar
for WBSTAB(G)) can be solved in time O(n2m+ n3 log n).

References

Cheng, E. and W. H. Cunningham (1997). Wheel inequalities for stable set polytopes. Mathematical
Programming, 77(3):389–421.

Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM,
24(1):1–13.

222

Computational complexity of the average
covering tree value

Ayumi Igarashi1 and Yoshitsugu Yamamoto2

1Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki
305-8573, Japan, Email: igarashi80@sk.tsukuba.ac.jp

2Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki 305-
8573, Japan, Email: yamamoto@sk.tsukuba.ac.jp

Khmelnitskaya et al. introduced cooperative games with directed graph structure
and proposed its single-valued solution concept, called the average covering tree
value. In this paper we show that the problem for calculating the average covering
tree value is #P-complete.

1 Introduction

This paper studies cooperative games with directed graph structure from the viewpoint of
computational complexity. A cooperative game with a directed graph was introduced by
Khmelnitskaya et al. [4]. The communication structure of this game is given by a directed
graph. Khmelnitskaya et al. also proposed this single-valued solution concept, called the
average covering tree value. To construct the average covering tree value, Khmelnitskaya et
al. introduced a so-called covering tree of a directed graph, which preserves the dominance
relation among players. The average covering tree value is defined as the average of marginal
contribution vectors corresponding to covering trees. The solution coincides with the Shapley
value [5] when the game has complete communication structure.

In this paper we discuss the computational complexity of the average covering tree value. We
demonstrate that the problem for calculating the average covering tree value is #P-complete.
The proof uses a reduction from counting the number of all linear extensions of an arbitrary
partial order, which has been shown by Brightwell et al. to be a #P-complete counting problem.

2 Preliminaries

2.1 TU-games with directed graph structure

We consider a cooperative transferable utility game with restricted communication structure,
called digraph games. A digraph game is represented by a triple (N, v,Γ), where N is a finite
set of n players, v : 2N → R is a characteristic function, and Γ ⊆ { (i, j) | i 6= j, i, j ∈ N }
is a collection of directed communication links between players. A subset S ∈ 2N is called
a coalition and v(S) stands for the worth of a coalition S. A payoff vector x ∈ Rn is an
n-dimensional vector giving payoff xi to player i ∈ N .

223

2.2 Definitions for Digraph

The pair G = (N,Γ) is called a digraph where N is a finite set of nodes and Γ is a collection
of directed links between nodes. In this paper we only consider digraphs without self-loops.
For a digraph G = (N,Γ), a sequence of different nodes (i1, i2, . . . , ik), k ≥ 2, is a path in Γ
if {(ih, ih+1), (ih+1, ih)} ∩ Γ 6= ∅ for h = 1, 2, . . . , k − 1. A sequence (i1, i2, . . . , ik), k ≥ 2, is a
directed path if (ih, ih+1) ∈ Γ for all h ∈ {1, 2, . . . , k − 1}. A path (i1, i2, . . . , ik) in Γ is a cycle
in Γ if {(ik, i1), (i1, ik)} ∩ Γ 6= ∅, and a directed path (i1, i2, . . . , ik), k ≥ 2, in Γ is a directed
cycle in Γ if (ik, i1) ∈ Γ. A digraph G = (N,Γ) is said to be acyclic if it has no directed cycles.
A digraph G = (N,Γ) is said to be transitive if for all i, j, k ∈ N , (i, j) ∈ Γ and (j, k) ∈ Γ
implies (i, k) ∈ Γ. For a digraph G = (N,Γ), the subset of Γ induced by S ∈ 2N is defined as

Γ|S := { (i, j) ∈ Γ | i, j ∈ S }.
A subset S ∈ 2N is connected if for any two distinct nodes i, j ∈ S there is a path in Γ|S
between i and j. For S ∈ 2N , a subset K of S is called a connected component of S if K
is maximally connected, i.e., K is connected but the set K ∪ {j} is not connected for any
j ∈ S \ K. Throughout the paper, it is assumed that N is always connected in the digraph
(N,Γ). For a digraph G = (N,Γ), for each node i ∈ N we define its sets of successors and
descendants as

sucΓ(i) = { j ∈ N | (i, j) ∈ Γ }
and

desΓ(i) = { j ∈ N | i = j or there exists a directed path from i to j in Γ }.
A node i ∈ N is said to be a predecessor of j ∈ N in Γ if there exists a directed path from i to
j in Γ. An acyclic connected digraph (N,T) is said to be a tree if it has a unique node without
predecessors, the root, and for every other node in N there is a unique directed path in T from
the root to that node. A node i ∈ S is an undominated node of S if every predecessor j of i in
Γ|S is a descendant of i in Γ|S . A node i ∈ S is a nondominant node of S if every descendant
j(6= i) of i in Γ|S is a predecessor of i in Γ|S . For a digraph (N,Γ) and a subset S ∈ 2N , let
UΓ(S) denote the set of undominated nodes of S and DΓ(S) denote the set of nondominant
nodes of S. When a digraph is acyclic, the following lemmas hold.

Lemma 2.1. Given an acyclic digraph G = (N,Γ). Node i is in UΓ(S) if and only if there is
no node j ∈ S such that (j, i) ∈ Γ|S.

Lemma 2.2. Given an acyclic digraph G = (N,Γ). Node i is in DΓ(S) if and only if there is
no node j ∈ S such that (i, j) ∈ Γ|S.

A node i ∈ N is called the minimum node of (N,Γ) if i is a descendant of every j ∈ N \ {i}
in Γ. If an acyclic digraph has the minimum node, it is uniquely determined.

2.3 Definitions for Poset

A partially ordered set, or for short poset is a pair P = (N,Γ), where N is a finite set and Γ is a
partial order on N , that is, an irreflexive, antisymmetric, and transitive binary relation. Two
elements i and j are comparable in Γ if either (i, j) ∈ Γ or (j, i) ∈ Γ. A linear order on N is a
partial order Γ in which every pair of elements N is comparable. A linear extension of a partial
order Γ on N is a linear order Γ′ on N such that (i, j) ∈ Γ′ whenever (i, j) ∈ Γ. Equivalently a
linear extension of a partial order Γ on N is a bijection π from N to {1, 2, . . . , |N |} such that
for all i, j ∈ N , (i, j) ∈ Γ implies π(i) < π(j).

224

2.4 Digraphs and Posets

Every poset P = (N,Γ) corresponds to a digraph considering N as the set of nodes and Γ as
the set of directed links. This digraph is acyclic and transitive. Conversely, for every acyclic
transitive digraph G = (N,Γ), Γ is a partial order on N .

Lemma 2.3 (Bondy and Murty [1]). A digraph G is a poset, if and only if G is acyclic and
transitive.

3 The average covering tree value

Khmelnitskaya et al.[4] define the average covering tree value by the average of marginal
contribution vectors with respect to specific trees, called covering trees of G = (N,Γ). In order
to construct a covering tree of G, Khmelnitskaya et al.[4] apply the following algorithm.

Algorithm 1 Construct a covering tree of G = (N,Γ)

1: Set T = ∅ and Qj = ∅ for all j ∈ N .
2: Choose any i ∈ UΓ(N) and set Qi = N \ {i}
3: Let {K1,K2, . . . ,Km} be the set of connected components of Qi. For every k = 1, 2, . . . ,m,

choose jk ∈ UΓ(Kk) and set Qjk = Kk \ {jk}. Set T = T ∪ {(i, j1), (i, j2), . . . , (i, jm)} and
Qi = ∅.

4: If Qj = ∅ for all j ∈ N , then stop. Otherwise, choose i ∈ N such that Qi 6= ∅ and return
to Step 3.

We denote by T Γ the set of all covering trees of a digraph G constructed by Algorithm 1.

Definition 3.1. For a digraph game (N, v,Γ), the marginal contribution vector mT corre-
sponding to a covering tree T ∈ T Γ is the vector of payoffs given by

mT
i = v(desT (i))−

∑

j∈sucT (i)

v(desT (j)), for all i ∈ N. (3.1)

Definition 3.2 (ACT(N, v,Γ)). For a digraph game (N, v,Γ), the average covering tree value
is the average of the marginal contribution vectors mT with respect to all covering trees of the
digraph (N,Γ), i.e.,

ACT(N, v,Γ) =
1

|T Γ|
∑

T∈T Γ

mT (N, v,Γ). (3.2)

4 Computational complexity of the average covering tree value

To discuss the computational complexity of the average covering tree value, we give some
properties of covering tree.

Lemma 4.1. Given an acyclic transitive digraph G = (N,Γ). Algorithm 1 yields a linear
extension of Γ if and only if G has the minimum node.

Lemma 4.2. Let G = (N,Γ) be an acyclic transitive digraph. If G has the minimum node,
then Algorithm 1 potentially yields all linear extensions of Γ.

225

For a poset P = (N,Γ), let R(Γ) denote the set of all linear extensions of Γ, with the
convention that |R(∅)| = 1. By Lemma 4.2, T Γ corresponds to R(Γ) when the digraph (N,Γ)
with the minimum node corresponds to a poset. In this case, we obtain another representation
of the average covering tree value as follows.

Lemma 4.3. Given a digraph game (N, v,Γ) such that the digraph G = (N,Γ) is acyclic and
transitive. Suppose that G has the minimum node. Then the average covering tree value of
player i ∈ N is rewritten as follows:

ACTi(N, v,Γ) =
1

|R(Γ)|
∑

S⊆N ;
i∈UΓ(S),

i∈DΓ((N\S)∪{i})

|R(Γ|S\{i})| · |R(Γ|N\S)|(v(S)− v(S \ {i})). (4.1)

Then, we can prove the following proposition in a similar way to the proof of Proposition 3
in Faigle and Kern [3].

Proposition 4.4 (# P-completeness of the average covering tree value). Assume that there
exists a polynomial-time algorithm to compute the average covering tree value for given digraph
games. Then there exists a polynomial-time algorithm to compute the number of all linear
extensions for any partial orders.

Brightwell and Winkler [2] proved that the problem of counting the number of all linear
extensions of an arbitrary partial order is #P-complete. Therefore, computing the average
covering tree value is also #P-complete, implying that an efficient algorithm to calculate the
average covering tree value is unlikely to exist.

References

[1] Bondy, J.A., Murty, U.S.R. Graph Theory, Springer (2008).

[2] Brightwell, G., Winkler, P.: Counting linear extensions is # P-complete. Order (1991)
8(3): 175–181.

[3] Faigle, U., Kern, W. : The Shapley value for cooperative games under precedence con-
straints. International Journal of Game Theory (1992) 21: 249–266.

[4] Khmelnitskaya, A.B., Selcuk, Ö., Talman, A.J.J.: The average covering tree value for
directed graph games. CentER Discussion Paper 2012-037, CentER, Tilburg University
(2011) 203–212.

[5] Shapley,L.S.: A value for n-person games. In H.W. Kuhn and A.W. Tucker (eds.): Con-
tributions to the Theory of Games II, Princeton University Press, Princeton, NJ (1953)
307–317.

226

